TSP-based depth-first search algorithms for enhanced path planning in laser-based directed energy

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Bingjie Xiao , Zhihui Zhang , Qi Wang , Baoyu Zhang , Shaopeng Zheng
{"title":"TSP-based depth-first search algorithms for enhanced path planning in laser-based directed energy","authors":"Bingjie Xiao ,&nbsp;Zhihui Zhang ,&nbsp;Qi Wang ,&nbsp;Baoyu Zhang ,&nbsp;Shaopeng Zheng","doi":"10.1016/j.precisioneng.2025.01.009","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of laser-directed energy deposition, it is crucial to optimize the path planning to improve the mechanical properties and ensemble fidelity of the precision printed samples. The traditional path planning methods typically require layer-by-layer calculation of the intersections between the scan lines and the contour loops, which leads to substantial redundant computations and low forming precision. In order to solve these problems, this paper transforms the path optimization into the Travelling Salesman Problem (TSP), followed by realizing the strategy of continuous inter-layer scanning through depth-first search. This method can generate efficient, non-intersecting connection paths in a short time, effectively reducing the total length of the connection path and processing time. Experimental results show that compared with the conventional zig-zag strategy, the path planning method based on TSP performs well in terms of near-net shape, compactness, and hardness of the molding samples. By shifting the intersection areas of the path to the outer contour and interacting the long and short sides, the method can realize the high precision joint part without gap forming and reduce the internal defects of the component.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"93 ","pages":"Pages 224-236"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925000200","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of laser-directed energy deposition, it is crucial to optimize the path planning to improve the mechanical properties and ensemble fidelity of the precision printed samples. The traditional path planning methods typically require layer-by-layer calculation of the intersections between the scan lines and the contour loops, which leads to substantial redundant computations and low forming precision. In order to solve these problems, this paper transforms the path optimization into the Travelling Salesman Problem (TSP), followed by realizing the strategy of continuous inter-layer scanning through depth-first search. This method can generate efficient, non-intersecting connection paths in a short time, effectively reducing the total length of the connection path and processing time. Experimental results show that compared with the conventional zig-zag strategy, the path planning method based on TSP performs well in terms of near-net shape, compactness, and hardness of the molding samples. By shifting the intersection areas of the path to the outer contour and interacting the long and short sides, the method can realize the high precision joint part without gap forming and reduce the internal defects of the component.

Abstract Image

基于tsp的激光定向能增强路径规划的深度优先搜索算法
在激光定向能沉积领域,优化路径规划是提高精密打印样品力学性能和整体保真度的关键。传统的路径规划方法通常需要逐层计算扫描线与轮廓环之间的交点,导致大量的冗余计算和较低的成形精度。为了解决这些问题,本文将路径优化问题转化为旅行商问题(TSP),然后通过深度优先搜索实现连续层间扫描策略。该方法可以在短时间内生成高效、不相交的连接路径,有效缩短了连接路径的总长度和处理时间。实验结果表明,与传统的锯齿形路径规划方法相比,基于TSP的路径规划方法在成型样品的近净形状、致密度和硬度方面都有较好的效果。该方法通过将路径的相交区域移至外轮廓,并将长、短边相互作用,实现了高精度的无间隙成形的连接件,减少了构件的内部缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信