Magnetic field influence on heat transfer of NEPCM in a porous triangular cavity with a cold fin and partial heat sources: AI analysis combined with ISPH method
Munirah Aali Alotaibi , Weaam Alhejaili , Abdelraheem M. Aly , Samiyah Almalki
{"title":"Magnetic field influence on heat transfer of NEPCM in a porous triangular cavity with a cold fin and partial heat sources: AI analysis combined with ISPH method","authors":"Munirah Aali Alotaibi , Weaam Alhejaili , Abdelraheem M. Aly , Samiyah Almalki","doi":"10.1016/j.aej.2025.01.080","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs the Incompressible Smoothed Particle Hydrodynamics (ISPH) method and an Artificial Neural Network (ANN) model to examine the thermal and fluid dynamics behavior of nano-enhanced phase change material (NEPCM) within a triangular cavity containing a fin. The research investigates how varying physical parameters optimize heat transfer efficiency. The analysis spans partial heat source length <span><math><mrow><mfenced><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>:</mo><mn>0.2</mn><mtext> to </mtext><mn>0.9</mn></mrow></mfenced></mrow></math></span>, Darcy number <span><math><mrow><mfenced><mrow><mi>Da</mi><mo>:</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mtext> to </mtext><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></mfenced></mrow></math></span>, Hartmann number <span><math><mrow><mfenced><mrow><mi>Ha</mi><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>50</mn></mrow></mfenced></mrow></math></span>, Cattaneo-Christov heat fluxes <span><math><mrow><mfenced><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>Ht</mi></mrow></msub><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>0.1</mn></mrow></mfenced></mrow></math></span>, fusion temperature <span><math><mrow><mfenced><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>:</mo><mn>0.25</mn><mtext> to </mtext><mn>0.95</mn></mrow></mfenced></mrow></math></span>, and nanoparticle concentration <span><math><mrow><mfenced><mrow><mi>ϕ</mi><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>0.06</mn></mrow></mfenced></mrow></math></span>. Key findings demonstrate that increasing <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> by 350 % enhances temperature distribution and nanofluid velocities, reducing the heat capacity ratio <span><math><mrow><mfenced><mrow><mi>Cr</mi></mrow></mfenced></mrow></math></span> by approximately 20 %. The addition of cooling fins decreases peak temperatures by around 15 %. Higher Darcy numbers improve circulation and convection by up to 30 %, creating more uniform thermal distributions, whereas lower <span><math><mi>Da</mi></math></span> values restrict fluid motion, intensifying temperature gradients. Increasing the Hartmann number reduces flow and heat transfer efficiency by 40 %, causing sharper temperature gradients, while lower <span><math><mi>Ha</mi></math></span> values promote natural convection and more uniform temperature distributions. The fusion temperature <span><math><mrow><mfenced><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></mfenced></mrow></math></span> stabilizes thermal profiles through latent heat absorption, adjusting <span><math><mi>Cr</mi></math></span> by 25 %. A higher nanoparticle concentration boosts the average Nusselt number <span><math><mrow><mfenced><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></mfenced></mrow></math></span> by 10 %, improving overall heat transfer efficiency. The ANN model’s training, reflected in a decreasing mean squared error (MSE), demonstrates prediction accuracy, and regression analysis reveals high model reliability, with predictions closely aligning with theoretical <span><math><mrow><mfenced><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></mfenced></mrow></math></span> values.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"119 ","pages":"Pages 345-358"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825001061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs the Incompressible Smoothed Particle Hydrodynamics (ISPH) method and an Artificial Neural Network (ANN) model to examine the thermal and fluid dynamics behavior of nano-enhanced phase change material (NEPCM) within a triangular cavity containing a fin. The research investigates how varying physical parameters optimize heat transfer efficiency. The analysis spans partial heat source length , Darcy number , Hartmann number , Cattaneo-Christov heat fluxes , fusion temperature , and nanoparticle concentration . Key findings demonstrate that increasing by 350 % enhances temperature distribution and nanofluid velocities, reducing the heat capacity ratio by approximately 20 %. The addition of cooling fins decreases peak temperatures by around 15 %. Higher Darcy numbers improve circulation and convection by up to 30 %, creating more uniform thermal distributions, whereas lower values restrict fluid motion, intensifying temperature gradients. Increasing the Hartmann number reduces flow and heat transfer efficiency by 40 %, causing sharper temperature gradients, while lower values promote natural convection and more uniform temperature distributions. The fusion temperature stabilizes thermal profiles through latent heat absorption, adjusting by 25 %. A higher nanoparticle concentration boosts the average Nusselt number by 10 %, improving overall heat transfer efficiency. The ANN model’s training, reflected in a decreasing mean squared error (MSE), demonstrates prediction accuracy, and regression analysis reveals high model reliability, with predictions closely aligning with theoretical values.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering