Magnetic field influence on heat transfer of NEPCM in a porous triangular cavity with a cold fin and partial heat sources: AI analysis combined with ISPH method

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Munirah Aali Alotaibi , Weaam Alhejaili , Abdelraheem M. Aly , Samiyah Almalki
{"title":"Magnetic field influence on heat transfer of NEPCM in a porous triangular cavity with a cold fin and partial heat sources: AI analysis combined with ISPH method","authors":"Munirah Aali Alotaibi ,&nbsp;Weaam Alhejaili ,&nbsp;Abdelraheem M. Aly ,&nbsp;Samiyah Almalki","doi":"10.1016/j.aej.2025.01.080","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs the Incompressible Smoothed Particle Hydrodynamics (ISPH) method and an Artificial Neural Network (ANN) model to examine the thermal and fluid dynamics behavior of nano-enhanced phase change material (NEPCM) within a triangular cavity containing a fin. The research investigates how varying physical parameters optimize heat transfer efficiency. The analysis spans partial heat source length <span><math><mrow><mfenced><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>:</mo><mn>0.2</mn><mtext> to </mtext><mn>0.9</mn></mrow></mfenced></mrow></math></span>, Darcy number <span><math><mrow><mfenced><mrow><mi>Da</mi><mo>:</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mtext> to </mtext><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></mfenced></mrow></math></span>, Hartmann number <span><math><mrow><mfenced><mrow><mi>Ha</mi><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>50</mn></mrow></mfenced></mrow></math></span>, Cattaneo-Christov heat fluxes <span><math><mrow><mfenced><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>Ht</mi></mrow></msub><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>0.1</mn></mrow></mfenced></mrow></math></span>, fusion temperature <span><math><mrow><mfenced><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>:</mo><mn>0.25</mn><mtext> to </mtext><mn>0.95</mn></mrow></mfenced></mrow></math></span>, and nanoparticle concentration <span><math><mrow><mfenced><mrow><mi>ϕ</mi><mo>:</mo><mn>0</mn><mtext> to </mtext><mn>0.06</mn></mrow></mfenced></mrow></math></span>. Key findings demonstrate that increasing <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> by 350 % enhances temperature distribution and nanofluid velocities, reducing the heat capacity ratio <span><math><mrow><mfenced><mrow><mi>Cr</mi></mrow></mfenced></mrow></math></span> by approximately 20 %. The addition of cooling fins decreases peak temperatures by around 15 %. Higher Darcy numbers improve circulation and convection by up to 30 %, creating more uniform thermal distributions, whereas lower <span><math><mi>Da</mi></math></span> values restrict fluid motion, intensifying temperature gradients. Increasing the Hartmann number reduces flow and heat transfer efficiency by 40 %, causing sharper temperature gradients, while lower <span><math><mi>Ha</mi></math></span> values promote natural convection and more uniform temperature distributions. The fusion temperature <span><math><mrow><mfenced><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></mfenced></mrow></math></span> stabilizes thermal profiles through latent heat absorption, adjusting <span><math><mi>Cr</mi></math></span> by 25 %. A higher nanoparticle concentration boosts the average Nusselt number <span><math><mrow><mfenced><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></mfenced></mrow></math></span> by 10 %, improving overall heat transfer efficiency. The ANN model’s training, reflected in a decreasing mean squared error (MSE), demonstrates prediction accuracy, and regression analysis reveals high model reliability, with predictions closely aligning with theoretical <span><math><mrow><mfenced><mrow><mover><mrow><mi>Nu</mi></mrow><mo>̅</mo></mover></mrow></mfenced></mrow></math></span> values.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"119 ","pages":"Pages 345-358"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825001061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the Incompressible Smoothed Particle Hydrodynamics (ISPH) method and an Artificial Neural Network (ANN) model to examine the thermal and fluid dynamics behavior of nano-enhanced phase change material (NEPCM) within a triangular cavity containing a fin. The research investigates how varying physical parameters optimize heat transfer efficiency. The analysis spans partial heat source length LB:0.2 to 0.9, Darcy number Da:102 to 105, Hartmann number Ha:0 to 50, Cattaneo-Christov heat fluxes δHt:0 to 0.1, fusion temperature θf:0.25 to 0.95, and nanoparticle concentration ϕ:0 to 0.06. Key findings demonstrate that increasing LB by 350 % enhances temperature distribution and nanofluid velocities, reducing the heat capacity ratio Cr by approximately 20 %. The addition of cooling fins decreases peak temperatures by around 15 %. Higher Darcy numbers improve circulation and convection by up to 30 %, creating more uniform thermal distributions, whereas lower Da values restrict fluid motion, intensifying temperature gradients. Increasing the Hartmann number reduces flow and heat transfer efficiency by 40 %, causing sharper temperature gradients, while lower Ha values promote natural convection and more uniform temperature distributions. The fusion temperature θf stabilizes thermal profiles through latent heat absorption, adjusting Cr by 25 %. A higher nanoparticle concentration boosts the average Nusselt number Nu̅ by 10 %, improving overall heat transfer efficiency. The ANN model’s training, reflected in a decreasing mean squared error (MSE), demonstrates prediction accuracy, and regression analysis reveals high model reliability, with predictions closely aligning with theoretical Nu̅ values.
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信