Neural network based optimization of transmit beamforming and RIS coefficients using channel covariances in MISO downlink

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Khin Thandar Kyaw , Wiroonsak Santipach , Kritsada Mamat , Kamol Kaemarungsi , Kazuhiko Fukawa , Lunchakorn Wuttisittikulkij
{"title":"Neural network based optimization of transmit beamforming and RIS coefficients using channel covariances in MISO downlink","authors":"Khin Thandar Kyaw ,&nbsp;Wiroonsak Santipach ,&nbsp;Kritsada Mamat ,&nbsp;Kamol Kaemarungsi ,&nbsp;Kazuhiko Fukawa ,&nbsp;Lunchakorn Wuttisittikulkij","doi":"10.1016/j.aeue.2024.155656","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an unsupervised beamforming neural network (BNN) and a supervised reconfigurable intelligent surface (RIS) convolutional neural network (CNN) to optimize transmit beamforming and RIS coefficients of multi-input single-output (MISO) downlink with RIS assistance. To avoid frequent beam updates, the proposed BNN and RIS CNN are based on slow-changing channel covariances and are different from most other neural networks that utilize channel instances. Numerical simulations show that for a small or moderate signal-to-noise ratio (SNR), the proposed BNN with RIS CNN can achieve a sum rate close to that of a system with optimal beams and RIS coefficients. Furthermore, the proposed scheme significantly reduces the computation time.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"191 ","pages":"Article 155656"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124005429","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an unsupervised beamforming neural network (BNN) and a supervised reconfigurable intelligent surface (RIS) convolutional neural network (CNN) to optimize transmit beamforming and RIS coefficients of multi-input single-output (MISO) downlink with RIS assistance. To avoid frequent beam updates, the proposed BNN and RIS CNN are based on slow-changing channel covariances and are different from most other neural networks that utilize channel instances. Numerical simulations show that for a small or moderate signal-to-noise ratio (SNR), the proposed BNN with RIS CNN can achieve a sum rate close to that of a system with optimal beams and RIS coefficients. Furthermore, the proposed scheme significantly reduces the computation time.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信