An efficient algorithm for modulus operation and its hardware implementation in prime number calculation

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
W.A. Susantha Wijesinghe
{"title":"An efficient algorithm for modulus operation and its hardware implementation in prime number calculation","authors":"W.A. Susantha Wijesinghe","doi":"10.1016/j.aeue.2024.155657","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel algorithm for the modulus operation for FPGA implementation. The proposed algorithm use only addition, subtraction, logical, and bit shift operations, avoiding the complexities and hardware costs associated with multiplication and division. It demonstrates consistent performance across operand sizes ranging from 32-bit to 2048-bit, addressing scalability challenges in cryptographic applications. Implemented in Verilog HDL and tested on a Xilinx Zynq-7000 family FPGA, the algorithm shows a predictable linear scaling of cycle count with bit length difference (BLD), described by the equation <span><math><mrow><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></math></span>, where <span><math><mi>y</mi></math></span> represents the cycle count and <span><math><mi>x</mi></math></span> represents the BLD. The application of this algorithm in prime number calculation up to 500,000 shows its practical utility and performance advantages. Comprehensive evaluations reveal efficient resource utilization, robust timing performance, and effective power management, making it suitable for high-performance and resource-constrained platforms. The results indicate that the proposed algorithm significantly improves the efficiency of modular arithmetic operations, with potential implications for cryptographic protocols and secure computing.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"191 ","pages":"Article 155657"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124005430","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel algorithm for the modulus operation for FPGA implementation. The proposed algorithm use only addition, subtraction, logical, and bit shift operations, avoiding the complexities and hardware costs associated with multiplication and division. It demonstrates consistent performance across operand sizes ranging from 32-bit to 2048-bit, addressing scalability challenges in cryptographic applications. Implemented in Verilog HDL and tested on a Xilinx Zynq-7000 family FPGA, the algorithm shows a predictable linear scaling of cycle count with bit length difference (BLD), described by the equation y=2x+2, where y represents the cycle count and x represents the BLD. The application of this algorithm in prime number calculation up to 500,000 shows its practical utility and performance advantages. Comprehensive evaluations reveal efficient resource utilization, robust timing performance, and effective power management, making it suitable for high-performance and resource-constrained platforms. The results indicate that the proposed algorithm significantly improves the efficiency of modular arithmetic operations, with potential implications for cryptographic protocols and secure computing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信