Whole-transcriptome analysis reveals the characteristics of intramuscular fat circRNA expression and its associated network in grazing yaks of different months of age under cold stress
IF 2.3 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Whole-transcriptome analysis reveals the characteristics of intramuscular fat circRNA expression and its associated network in grazing yaks of different months of age under cold stress","authors":"Yaqian Liu, Yonggang Sun, Yincang Han, Weiqin Ding, Shengwei Jin, Jianyu Chen, Fajie Gou","doi":"10.1016/j.ejbt.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The aim of this study was to screen circRNAs related to fat deposition in yaks, and to identify candidate circRNAs for yak meat quality improvement. Six male yaks with insignificant differences in body weights were selected as test subjects, and 3 yaks (G18_IMF) were randomly slaughtered at the beginning of the experiment, while the remaining 3 yaks were naturally grazed until 24 months of age (G24_IMF), and then slaughtered at the end of the experiment, and the intramuscular fat was collected from the dorsal muscle. At the end of the experiment, the yaks were slaughtered and the intramuscular fat from the back was collected for whole transcriptome sequencing.</div></div><div><h3>Results</h3><div>The results showed that 352 differential circRNAs, 86 differential miRNAs and 3981 differential mRNAs were found. miRNAs and mRNAs network regulation maps were successfully constructed through gene expression correlation analysis and target gene prediction.</div></div><div><h3>Conclusions</h3><div>Taking the intersection of the predicted circRNA target genes with the differential miRNAs for intramuscular fat in yaks of different months of age, we obtained two candidate ceRNA pairs that might be related to intramuscular fat deposition in yaks, and found that bta-let-7i might be related to fat deposition in yaks and might be regulated by X_85287959_85291068, and that X_85287959_85291068 could be a candidate circRNA to enhance the quality of yak meat. The results may provide a reference for further investigation of the regulatory network of intramuscular fat deposition in yak.</div><div><strong>How to cite:</strong> Liu Y, Sun Y, Han Y, et al. Whole-transcriptome analysis reveals the characteristics of intramuscular fat circRNA expression and its associated network in grazing yaks of different months of age under cold stress. Electron J Biotechnol 2025;74. <span><span>https://doi.org/10.1016/j.ejbt.2024.10.004</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"74 ","pages":"Pages 11-18"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345825000016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The aim of this study was to screen circRNAs related to fat deposition in yaks, and to identify candidate circRNAs for yak meat quality improvement. Six male yaks with insignificant differences in body weights were selected as test subjects, and 3 yaks (G18_IMF) were randomly slaughtered at the beginning of the experiment, while the remaining 3 yaks were naturally grazed until 24 months of age (G24_IMF), and then slaughtered at the end of the experiment, and the intramuscular fat was collected from the dorsal muscle. At the end of the experiment, the yaks were slaughtered and the intramuscular fat from the back was collected for whole transcriptome sequencing.
Results
The results showed that 352 differential circRNAs, 86 differential miRNAs and 3981 differential mRNAs were found. miRNAs and mRNAs network regulation maps were successfully constructed through gene expression correlation analysis and target gene prediction.
Conclusions
Taking the intersection of the predicted circRNA target genes with the differential miRNAs for intramuscular fat in yaks of different months of age, we obtained two candidate ceRNA pairs that might be related to intramuscular fat deposition in yaks, and found that bta-let-7i might be related to fat deposition in yaks and might be regulated by X_85287959_85291068, and that X_85287959_85291068 could be a candidate circRNA to enhance the quality of yak meat. The results may provide a reference for further investigation of the regulatory network of intramuscular fat deposition in yak.
How to cite: Liu Y, Sun Y, Han Y, et al. Whole-transcriptome analysis reveals the characteristics of intramuscular fat circRNA expression and its associated network in grazing yaks of different months of age under cold stress. Electron J Biotechnol 2025;74. https://doi.org/10.1016/j.ejbt.2024.10.004.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering