Manman Qi , Kai Zhang , Xue Zhang , Yuzhao Zhu , Banglan Cai , Chao Wang , Gang Zhao , Denghai Zhang , Jian Zhang
{"title":"Arginine tagged liposomal carrier for the delivery of celastrol for ferroptosis-induced hepatocellular carcinoma therapy","authors":"Manman Qi , Kai Zhang , Xue Zhang , Yuzhao Zhu , Banglan Cai , Chao Wang , Gang Zhao , Denghai Zhang , Jian Zhang","doi":"10.1016/j.colsurfb.2025.114546","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a predominant malignant liver tumor that cannot be efficiently treated because of poor response, toxicity, and drug resistance. Ferroptosis is an iron-dependent way of cell death associated with abnormal intracellular lipid metabolism. Celastrol (Cel) has the ability to inhibit the progression of HCC by regulating multiple signaling pathways and induce ferroptosis. However, Cel exists the limitations of low water solubility, low oral bioavailability, and high organ toxicity. Cel was encapsulated in polyethylene glycol–based liposomes modified with L-arginine (Cel@Lip-Arg). Cel@Lip-Arg has a uniform size distribution (∼100 nm), high drug loading (80 %), and excellent ability to target liver cancer cells. <em>In vitro</em> experiments demonstrated that Cel@Lip-Arg considerably suppressed the activity of HuH7 (hepatoma) cells but had a negligible effect on L02 (normal) cells. Cel@Lip-Arg induced ferroptosis in hepatoma cells by promoting transferrin receptor expression, inhibiting system xc<sup>−</sup> and glutathione peroxidase 4, and favoring intracellular peroxide accumulation. <em>In vivo</em> experiments revealed that Cel@Lip-Arg plays a therapeutic role by inducing ferroptosis. Compared to Cel, Cel@Lip-Arg had a higher anti-hepatoma activity and effectively reduced the toxicity of Cel in mice. Cel@Lip-Arg-induced ferroptosis was concluded to be an attractive strategy for the precise treatment of HCC.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114546"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignant liver tumor that cannot be efficiently treated because of poor response, toxicity, and drug resistance. Ferroptosis is an iron-dependent way of cell death associated with abnormal intracellular lipid metabolism. Celastrol (Cel) has the ability to inhibit the progression of HCC by regulating multiple signaling pathways and induce ferroptosis. However, Cel exists the limitations of low water solubility, low oral bioavailability, and high organ toxicity. Cel was encapsulated in polyethylene glycol–based liposomes modified with L-arginine (Cel@Lip-Arg). Cel@Lip-Arg has a uniform size distribution (∼100 nm), high drug loading (80 %), and excellent ability to target liver cancer cells. In vitro experiments demonstrated that Cel@Lip-Arg considerably suppressed the activity of HuH7 (hepatoma) cells but had a negligible effect on L02 (normal) cells. Cel@Lip-Arg induced ferroptosis in hepatoma cells by promoting transferrin receptor expression, inhibiting system xc− and glutathione peroxidase 4, and favoring intracellular peroxide accumulation. In vivo experiments revealed that Cel@Lip-Arg plays a therapeutic role by inducing ferroptosis. Compared to Cel, Cel@Lip-Arg had a higher anti-hepatoma activity and effectively reduced the toxicity of Cel in mice. Cel@Lip-Arg-induced ferroptosis was concluded to be an attractive strategy for the precise treatment of HCC.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.