Anisotropic Janus monolayers BXY (X = P, as or Sb, Y = S, Se or Te) for photocatalytic water splitting: A first-principles study

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Yanfu Zhao , Bofeng Zhang , Jiahe Lin
{"title":"Anisotropic Janus monolayers BXY (X = P, as or Sb, Y = S, Se or Te) for photocatalytic water splitting: A first-principles study","authors":"Yanfu Zhao ,&nbsp;Bofeng Zhang ,&nbsp;Jiahe Lin","doi":"10.1016/j.solener.2025.113320","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in two-dimensional materials have unveiled their promise in various applications, particularly in the realms of optics, electronics, and optoelectronics. This study presents a theoretical exploration of a novel class of anisotropic Janus monolayer materials, BXY (with X being P, As, or Sb, and Y being S, Se, or Te), utilizing first-principles density functional theory. Our stability analysis reveal that the eight of these monolayers exhibit high stability, with the exception of BSbS. Through the application of the HSE06 hybrid functional, We’ve identified that these stable monolayers fall into the category of semiconductors with an indirect bandgap, and their band gaps span a range between 0.35 and 3.00 eV. Except for BSbSe, all other semiconductors fulfill the band edges criteria in photocatalytic water splitting. Additionally, we have observed that these materials possess anisotropic and superior carrier mobility and optical absorption properties, attributed to their distinct anisotropic structure. As for the solar-to-hydrogen (STH) efficiency, five of these monolayers exhibit STH efficiencies that go beyond the 10 %, with BAsS and BSbTe reaching notable values of 33.93 % and 36.11 %, respectively. Furthermore, the synergistic effects of photoexcitation and electrocatalysis in these monolayers facilitate the overall water splitting process. Additionally, we explored how uniaxial and biaxial strain impact the electronic, optical absorption, OER, and HER activity, as well as the STH efficiency, of these stable monolayers. We found that a small range of uniaxial strain (−2% to 2 %) can enhance their STH efficiency. In our study, we concluded that BSbTe is the most suitable material for photocatalytic water splitting.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"288 ","pages":"Article 113320"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25000830","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in two-dimensional materials have unveiled their promise in various applications, particularly in the realms of optics, electronics, and optoelectronics. This study presents a theoretical exploration of a novel class of anisotropic Janus monolayer materials, BXY (with X being P, As, or Sb, and Y being S, Se, or Te), utilizing first-principles density functional theory. Our stability analysis reveal that the eight of these monolayers exhibit high stability, with the exception of BSbS. Through the application of the HSE06 hybrid functional, We’ve identified that these stable monolayers fall into the category of semiconductors with an indirect bandgap, and their band gaps span a range between 0.35 and 3.00 eV. Except for BSbSe, all other semiconductors fulfill the band edges criteria in photocatalytic water splitting. Additionally, we have observed that these materials possess anisotropic and superior carrier mobility and optical absorption properties, attributed to their distinct anisotropic structure. As for the solar-to-hydrogen (STH) efficiency, five of these monolayers exhibit STH efficiencies that go beyond the 10 %, with BAsS and BSbTe reaching notable values of 33.93 % and 36.11 %, respectively. Furthermore, the synergistic effects of photoexcitation and electrocatalysis in these monolayers facilitate the overall water splitting process. Additionally, we explored how uniaxial and biaxial strain impact the electronic, optical absorption, OER, and HER activity, as well as the STH efficiency, of these stable monolayers. We found that a small range of uniaxial strain (−2% to 2 %) can enhance their STH efficiency. In our study, we concluded that BSbTe is the most suitable material for photocatalytic water splitting.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信