On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials

IF 1.2 3区 数学 Q1 MATHEMATICS
Christof Beierle , Patrick Felke
{"title":"On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials","authors":"Christof Beierle ,&nbsp;Patrick Felke","doi":"10.1016/j.ffa.2025.102590","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> be a prime and <em>n</em> a positive integer. As the first main result, we present a <em>deterministic</em> algorithm for deciding whether the matrix algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo></math></span> with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∈</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> is a finite field, performing at most <span><math><mi>O</mi><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> elementary operations in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In the affirmative case, the algorithm returns a defining element <em>a</em> so that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>a</mi><mo>]</mo></math></span>.</div><div>We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial <span><math><mi>g</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, we associate to <em>g</em> a set of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices with coefficients in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, denoted <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to <em>g</em>. In the case where <em>g</em> is a <em>planar</em> DO polynomial, <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> is the set of quotients <span><math><mi>X</mi><msup><mrow><mi>Y</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>Y</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>X</mi></math></span> being elements from the spread set of the corresponding commutative presemifield, and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> forms a field of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> if and only if <em>g</em> is equivalent to the planar monomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, i.e., if and only if the commutative presemifield associated to <em>g</em> is isotopic to a finite field.</div><div>As the second main result, we analyze the structure of <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> for all planar DO <em>monomials</em>, i.e., for commutative presemifields of odd order being isotopic to a finite field or a commutative twisted field. More precisely, for <em>g</em> being equivalent to a planar DO monomial, we show that every non-zero element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> generates a field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo><mo>⊆</mo><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> <em>contains</em> the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102590"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let p be a prime and n a positive integer. As the first main result, we present a deterministic algorithm for deciding whether the matrix algebra Fp[A1,,At] with A1,,AtGL(n,Fp) is a finite field, performing at most O(tn6log(p)) elementary operations in Fp. In the affirmative case, the algorithm returns a defining element a so that Fp[A1,,At]=Fp[a].
We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial gFpn[x], we associate to g a set of n×n matrices with coefficients in Fp, denoted Quot(Dg), that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to g. In the case where g is a planar DO polynomial, Quot(Dg) is the set of quotients XY1 with Y0,X being elements from the spread set of the corresponding commutative presemifield, and Quot(Dg) forms a field of order pn if and only if g is equivalent to the planar monomial x2, i.e., if and only if the commutative presemifield associated to g is isotopic to a finite field.
As the second main result, we analyze the structure of Quot(Dg) for all planar DO monomials, i.e., for commutative presemifields of odd order being isotopic to a finite field or a commutative twisted field. More precisely, for g being equivalent to a planar DO monomial, we show that every non-zero element XQuot(Dg) generates a field Fp[X]Quot(Dg) and Quot(Dg) contains the field Fpn.
有限域与平面Dembowski-Ostrom单项式同构的矩阵代数
设p为质数,n为正整数。作为第一个主要结果,我们给出了确定矩阵代数Fp[A1,…,At]与A1,…,At∈GL(n,Fp)是否为有限域,且在Fp中最多执行O(tn6log (p))个初等运算的确定性算法。在肯定情况下,算法返回一个定义元素a,使得Fp[A1,…,At]=Fp[a]。然后研究了Dembowski-Ostrom (DO)多项式扩展仿射等价的一个不变量。更准确地说,对于一个DO多项式g∈Fpn[x],我们将系数在Fp中的n×n矩阵集合关联到g,记为“(Dg)”,当对g应用扩展仿射等价变换时,该矩阵在矩阵相似度下保持不变。在g是平面DO多项式的情况下,“(Dg)”是Y≠0的商XY−1的集合,x是对应的交换前提域的展开集中的元素,且当且仅当g等于平面单项式x2时,即当且仅当与g相关的交换前提域与有限域同位素时,g (Dg)形成pn阶域。作为第二个主要结果,我们分析了所有平面DO单项式的Quot(Dg)的结构,即奇数阶的可交换前提域与有限场或可交换扭曲场同位素。更确切地说,对于g等价于平面DO单项式,我们证明了每个非零元素X∈(Dg)产生一个场Fp[X],且“g”包含一个场Fpn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信