Soil age and soil phosphate content shape microarthropod communities of Dutch forest ecosystems

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Joren Bruggink , Marie-Charlott Petersdorf , Wilco C.E.P. Verberk , Henk Siepel
{"title":"Soil age and soil phosphate content shape microarthropod communities of Dutch forest ecosystems","authors":"Joren Bruggink ,&nbsp;Marie-Charlott Petersdorf ,&nbsp;Wilco C.E.P. Verberk ,&nbsp;Henk Siepel","doi":"10.1016/j.apsoil.2025.105918","DOIUrl":null,"url":null,"abstract":"<div><div>Soil microarthropods, particularly mites, are key contributors to the decomposition of plant litter and nutrient cycling in forest ecosystems, where they can reach high levels of biodiversity. However, their diversity can be impacted by soil disturbances such as soil compaction or organic matter removal and by phosphorus limitation, driven by nitrogen (N) deposition.</div><div>This study compares microarthropod communities across forest locations differing in soil age and soil phosphate levels, using a trait-based approach focused on the species' feeding guild and body size. We compared 3 old forest soils, 19 young forest soils, and 10 old hedgerow soils. The old hedgerow soils resembled old forest soils in age, but have higher P-availability, allowing us to disentangle these effects. We hypothesized that older soils, with minimal disturbance, will support higher species richness due to their poor colonization abilities.</div><div>Our results show that older soils have indeed a higher microarthropods species richness than young soils. Greatest differences in the species richness and abundance were observed in (herbo)fungivorous grazers, a group of mites essential for decomposition. Consequently, young forest soils are expected to exhibit a less efficient decomposition process. The higher P-availability in old hedgerow soils likely explains their greater richness of herbivorous grazers and the higher abundance of larger mite species, by creating a more efficient trophic transfer that supports larger bodied consumers. Our findings indicate that differences in body size and feeding guild correspond to differences across forest soils in terms of age and P-availability of forest soils.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105918"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000563","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microarthropods, particularly mites, are key contributors to the decomposition of plant litter and nutrient cycling in forest ecosystems, where they can reach high levels of biodiversity. However, their diversity can be impacted by soil disturbances such as soil compaction or organic matter removal and by phosphorus limitation, driven by nitrogen (N) deposition.
This study compares microarthropod communities across forest locations differing in soil age and soil phosphate levels, using a trait-based approach focused on the species' feeding guild and body size. We compared 3 old forest soils, 19 young forest soils, and 10 old hedgerow soils. The old hedgerow soils resembled old forest soils in age, but have higher P-availability, allowing us to disentangle these effects. We hypothesized that older soils, with minimal disturbance, will support higher species richness due to their poor colonization abilities.
Our results show that older soils have indeed a higher microarthropods species richness than young soils. Greatest differences in the species richness and abundance were observed in (herbo)fungivorous grazers, a group of mites essential for decomposition. Consequently, young forest soils are expected to exhibit a less efficient decomposition process. The higher P-availability in old hedgerow soils likely explains their greater richness of herbivorous grazers and the higher abundance of larger mite species, by creating a more efficient trophic transfer that supports larger bodied consumers. Our findings indicate that differences in body size and feeding guild correspond to differences across forest soils in terms of age and P-availability of forest soils.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信