{"title":"Long-range correlations in cryptocurrency markets: A multi-scale DFA approach","authors":"Huy Quoc Bui , Christophe Schinckus , Hamdan Al-Jaifi","doi":"10.1016/j.physa.2025.130417","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the long-range correlations within the cryptocurrency market by investigating the Hurst exponents across multiple time scales for the log-returns of the top five cryptocurrencies (capturing over 70 % of the market capitalization) between 2017 and 2023. The study uncovers several notable insights. An overall analysis indicates the presence of persistent long-range correlations in four out of five cryptocurrencies, with only XRP displaying characteristics of a random walk. A closer look differentiates the dynamics between short-term and long-term scales, revealing that ETH uniquely maintaining a strong persistence in both, unlike the other cryptocurrencies, which show varying behaviors across these scales. Additionally, ETH and XRP show persistent effects in times of market volatility. This reflects temporal patterns within cryptocurrency markets, enhancing the understanding of market behaviour across varying conditions and timescales. Our findings suggest opportunities for using Hurst exponents as tools to monitor trend continuation or reversal, develop asset-specific strategies, and detect systemic risks during extreme market conditions, offering valuable insights for traders and policymakers navigating the cryptocurrency market's inherent volatility</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"661 ","pages":"Article 130417"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712500069X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the long-range correlations within the cryptocurrency market by investigating the Hurst exponents across multiple time scales for the log-returns of the top five cryptocurrencies (capturing over 70 % of the market capitalization) between 2017 and 2023. The study uncovers several notable insights. An overall analysis indicates the presence of persistent long-range correlations in four out of five cryptocurrencies, with only XRP displaying characteristics of a random walk. A closer look differentiates the dynamics between short-term and long-term scales, revealing that ETH uniquely maintaining a strong persistence in both, unlike the other cryptocurrencies, which show varying behaviors across these scales. Additionally, ETH and XRP show persistent effects in times of market volatility. This reflects temporal patterns within cryptocurrency markets, enhancing the understanding of market behaviour across varying conditions and timescales. Our findings suggest opportunities for using Hurst exponents as tools to monitor trend continuation or reversal, develop asset-specific strategies, and detect systemic risks during extreme market conditions, offering valuable insights for traders and policymakers navigating the cryptocurrency market's inherent volatility
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.