Expanding the print parameter window for continuous line formation in binder jet additive manufacturing through pre-wetting of the powder bed

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Jacob E. Lawrence, Madi P. Lawrence, Nathan B. Crane
{"title":"Expanding the print parameter window for continuous line formation in binder jet additive manufacturing through pre-wetting of the powder bed","authors":"Jacob E. Lawrence,&nbsp;Madi P. Lawrence,&nbsp;Nathan B. Crane","doi":"10.1016/j.addma.2025.104693","DOIUrl":null,"url":null,"abstract":"<div><div>Binder Jet (BJ) additive manufacturing creates parts by binding powder particles together with inkjet-printed droplets. BJ shows promise as an industrial process, but poor final part properties often limit applications. Prior work has shown that there is significant powder rearrangement from the kinetic impact of binder droplets that may contribute to the formation of defects in the final parts. This study builds upon previous research by studying the effects of print parameters, including droplet spacing and inter-arrival time, and droplet parameters, including droplet volume, velocity, and satellite formation, on the formation of lines. A new method, using an adhesive film, for extracting single-layer parts is described which allows for study of smaller, more sensitive primitives. The results show that pre-wetting the powder bed expands the feasible design space and allows printing with larger droplet spacings, smaller inter-arrival times, and slower droplet velocities. This enables up to 50 % faster print rates and the potential for reduced powder relocation due to droplet impact. Results from this work can be used to inform the selection of optimal process parameters and the design of new BJ systems to produce higher quality parts.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"100 ","pages":"Article 104693"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Binder Jet (BJ) additive manufacturing creates parts by binding powder particles together with inkjet-printed droplets. BJ shows promise as an industrial process, but poor final part properties often limit applications. Prior work has shown that there is significant powder rearrangement from the kinetic impact of binder droplets that may contribute to the formation of defects in the final parts. This study builds upon previous research by studying the effects of print parameters, including droplet spacing and inter-arrival time, and droplet parameters, including droplet volume, velocity, and satellite formation, on the formation of lines. A new method, using an adhesive film, for extracting single-layer parts is described which allows for study of smaller, more sensitive primitives. The results show that pre-wetting the powder bed expands the feasible design space and allows printing with larger droplet spacings, smaller inter-arrival times, and slower droplet velocities. This enables up to 50 % faster print rates and the potential for reduced powder relocation due to droplet impact. Results from this work can be used to inform the selection of optimal process parameters and the design of new BJ systems to produce higher quality parts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信