Large-scale Riemannian meta-optimization via subspace adaptation

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peilin Yu , Yuwei Wu , Zhi Gao , Xiaomeng Fan , Yunde Jia
{"title":"Large-scale Riemannian meta-optimization via subspace adaptation","authors":"Peilin Yu ,&nbsp;Yuwei Wu ,&nbsp;Zhi Gao ,&nbsp;Xiaomeng Fan ,&nbsp;Yunde Jia","doi":"10.1016/j.cviu.2025.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Riemannian meta-optimization provides a promising approach to solving non-linear constrained optimization problems, which trains neural networks as optimizers to perform optimization on Riemannian manifolds. However, existing Riemannian meta-optimization methods take up huge memory footprints in large-scale optimization settings, as the learned optimizer can only adapt gradients of a fixed size and thus cannot be shared across different Riemannian parameters. In this paper, we propose an efficient Riemannian meta-optimization method that significantly reduces the memory burden for large-scale optimization via a subspace adaptation scheme. Our method trains neural networks to individually adapt the row and column subspaces of Riemannian gradients, instead of directly adapting the full gradient matrices in existing Riemannian meta-optimization methods. In this case, our learned optimizer can be shared across Riemannian parameters with different sizes. Our method reduces the model memory consumption by six orders of magnitude when optimizing an orthogonal mainstream deep neural network (<em>e.g.</em> ResNet50). Experiments on multiple Riemannian tasks show that our method can not only reduce the memory consumption but also improve the performance of Riemannian meta-optimization.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"253 ","pages":"Article 104306"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000293","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Riemannian meta-optimization provides a promising approach to solving non-linear constrained optimization problems, which trains neural networks as optimizers to perform optimization on Riemannian manifolds. However, existing Riemannian meta-optimization methods take up huge memory footprints in large-scale optimization settings, as the learned optimizer can only adapt gradients of a fixed size and thus cannot be shared across different Riemannian parameters. In this paper, we propose an efficient Riemannian meta-optimization method that significantly reduces the memory burden for large-scale optimization via a subspace adaptation scheme. Our method trains neural networks to individually adapt the row and column subspaces of Riemannian gradients, instead of directly adapting the full gradient matrices in existing Riemannian meta-optimization methods. In this case, our learned optimizer can be shared across Riemannian parameters with different sizes. Our method reduces the model memory consumption by six orders of magnitude when optimizing an orthogonal mainstream deep neural network (e.g. ResNet50). Experiments on multiple Riemannian tasks show that our method can not only reduce the memory consumption but also improve the performance of Riemannian meta-optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信