Maria Portarapillo , Almerinda Di Benedetto , Stefan H. Spitzer
{"title":"Turbulence effect on the determination of powders safety characteristics — A review on the experimental findings and simulation approaches","authors":"Maria Portarapillo , Almerinda Di Benedetto , Stefan H. Spitzer","doi":"10.1016/j.powtec.2025.120694","DOIUrl":null,"url":null,"abstract":"<div><div>Safety characteristics are widely used in the process industry to design facilities in a safe way. For powders, they are normally investigated under turbulent conditions inside a spherical test vessel, the so called 20L-sphere, to disperse the dust in air. This has been the target of many researchers to either investigate the turbulence that is present during the standardized test conditions, to compare it to quiescent conditions or to manipulate it for the comparison to other conditions. The approaches have been numerous and while the focus used to be on obtaining different experimental results it has shifted more and more to different kinds of simulations. This review gives an overview about different simulation approaches and how they can be compared. It is also an overview over the experimental findings and compares it to data obtained for three different dusts while changing the pre-ignition turbulence level in a very fine way.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"454 ","pages":"Article 120694"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025000890","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Safety characteristics are widely used in the process industry to design facilities in a safe way. For powders, they are normally investigated under turbulent conditions inside a spherical test vessel, the so called 20L-sphere, to disperse the dust in air. This has been the target of many researchers to either investigate the turbulence that is present during the standardized test conditions, to compare it to quiescent conditions or to manipulate it for the comparison to other conditions. The approaches have been numerous and while the focus used to be on obtaining different experimental results it has shifted more and more to different kinds of simulations. This review gives an overview about different simulation approaches and how they can be compared. It is also an overview over the experimental findings and compares it to data obtained for three different dusts while changing the pre-ignition turbulence level in a very fine way.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.