Optimization of medium formulations for biomass vaccine production of gdhA derivative Pasteurella multocida B:2 using statistical experimental design

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Siti Nur Hazwani Oslan , Jiun Shen Loo , Rosfarizan Mohamad , Siti Khairani Bejo , Mohd Zamri Saad
{"title":"Optimization of medium formulations for biomass vaccine production of gdhA derivative Pasteurella multocida B:2 using statistical experimental design","authors":"Siti Nur Hazwani Oslan ,&nbsp;Jiun Shen Loo ,&nbsp;Rosfarizan Mohamad ,&nbsp;Siti Khairani Bejo ,&nbsp;Mohd Zamri Saad","doi":"10.1016/j.bcab.2025.103504","DOIUrl":null,"url":null,"abstract":"<div><div>The glutamate dehydrogenase (gdhA) gene of a pathogenic <em>Pasteurella multocida</em> B:2 was successfully inactivated to create an attenuated strain as a vaccine candidate against hemorrhagic septicemia (HS) in ruminants. This study presents a novel approach to optimizing the medium formulation for high-throughput mass production of a gdhA-inactivated <em>P. multocida</em> B:2, which is critical for scaling up vaccine production. Using response surface methodology (RSM) with a central composite design (CCD), we systematically investigated the effects of various medium components on biomass yield. Yeast extract, glucose, sodium chloride, and sodium phosphate were identified as critical factors, with yeast extract demonstrating a significant enhancement in biomass production, yielding 2.03 ± 0.15 mg/mL, compared to traditional peptone (1.30 ± 0.26 mg/mL) and inorganic nitrogen sources like ammonium chloride and ammonium sulfate (&lt;1.0 mg/mL). Among carbon sources, glucose paired with yeast extract produced the highest biomass, while sucrose, white sugar, and soluble starch had minimal effects. Optimization through CCD identified the ideal concentrations of yeast extract, glucose, NaCl, and NaH₂PO₄ as 15.64 g/L, 1.91 g/L, 3.06 g/L, and 2.48 g/L, respectively, resulting in a 35% increase in biomass yield to 3.10 mg/mL. Yeast extract was the key driver of growth, with optimal concentrations between 5 and 20 g/L, while excess glucose, NaCl, and NaH₂PO₄ inhibited growth. Statistical analysis revealed that the quadratic polynomial model fit the data well (R<sup>2</sup> = 0.8440, model F-value = 5.80, p &lt; 0.05). The novelty of this study lies in the optimization of a medium that significantly improves biomass production compared to conventional formulations, providing a cost-effective and efficient solution for scaling up the production of attenuated <em>P. multocida</em> B:2. This optimized medium holds promise for advancing vaccine development against HS.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103504"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The glutamate dehydrogenase (gdhA) gene of a pathogenic Pasteurella multocida B:2 was successfully inactivated to create an attenuated strain as a vaccine candidate against hemorrhagic septicemia (HS) in ruminants. This study presents a novel approach to optimizing the medium formulation for high-throughput mass production of a gdhA-inactivated P. multocida B:2, which is critical for scaling up vaccine production. Using response surface methodology (RSM) with a central composite design (CCD), we systematically investigated the effects of various medium components on biomass yield. Yeast extract, glucose, sodium chloride, and sodium phosphate were identified as critical factors, with yeast extract demonstrating a significant enhancement in biomass production, yielding 2.03 ± 0.15 mg/mL, compared to traditional peptone (1.30 ± 0.26 mg/mL) and inorganic nitrogen sources like ammonium chloride and ammonium sulfate (<1.0 mg/mL). Among carbon sources, glucose paired with yeast extract produced the highest biomass, while sucrose, white sugar, and soluble starch had minimal effects. Optimization through CCD identified the ideal concentrations of yeast extract, glucose, NaCl, and NaH₂PO₄ as 15.64 g/L, 1.91 g/L, 3.06 g/L, and 2.48 g/L, respectively, resulting in a 35% increase in biomass yield to 3.10 mg/mL. Yeast extract was the key driver of growth, with optimal concentrations between 5 and 20 g/L, while excess glucose, NaCl, and NaH₂PO₄ inhibited growth. Statistical analysis revealed that the quadratic polynomial model fit the data well (R2 = 0.8440, model F-value = 5.80, p < 0.05). The novelty of this study lies in the optimization of a medium that significantly improves biomass production compared to conventional formulations, providing a cost-effective and efficient solution for scaling up the production of attenuated P. multocida B:2. This optimized medium holds promise for advancing vaccine development against HS.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信