Hui Jing*, Paul L. Richardson, Gregory K. Potts, Sameera Senaweera, Violeta L. Marin, Ryan A. McClure, Adam Banlasan, Hua Tang, James E. Kath, Shitalben Patel, Maricel Torrent, Renze Ma and Jon D. Williams*,
{"title":"Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition","authors":"Hui Jing*, Paul L. Richardson, Gregory K. Potts, Sameera Senaweera, Violeta L. Marin, Ryan A. McClure, Adam Banlasan, Hua Tang, James E. Kath, Shitalben Patel, Maricel Torrent, Renze Ma and Jon D. Williams*, ","doi":"10.1021/acs.jproteome.4c0069610.1021/acs.jproteome.4c00696","DOIUrl":null,"url":null,"abstract":"<p >Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. The streamlined process significantly reduced both the overall and hands-on time needed for sample preparation. Additionally, we developed a data-independent acquisition-mass spectrometry (DIA-MS) method to establish an efficient label-free quantitative chemical proteomic kinome profiling workflow. DIA-MS yielded a coverage of ∼380 kinases, a > 60% increase compared to using a data-dependent acquisition (DDA)-MS method, and provided reproducible target profiling of the kinase inhibitor dasatinib. We further showcased the applicability of this AC-MS workflow for assessing the selectivity of two clinical-stage CDK9 inhibitors against ∼250 probe-enriched kinases. Our study here provides a roadmap for efficient target engagement and selectivity profiling in native cell or tissue lysates using AC-MS.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 2","pages":"537–549 537–549"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00696","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. The streamlined process significantly reduced both the overall and hands-on time needed for sample preparation. Additionally, we developed a data-independent acquisition-mass spectrometry (DIA-MS) method to establish an efficient label-free quantitative chemical proteomic kinome profiling workflow. DIA-MS yielded a coverage of ∼380 kinases, a > 60% increase compared to using a data-dependent acquisition (DDA)-MS method, and provided reproducible target profiling of the kinase inhibitor dasatinib. We further showcased the applicability of this AC-MS workflow for assessing the selectivity of two clinical-stage CDK9 inhibitors against ∼250 probe-enriched kinases. Our study here provides a roadmap for efficient target engagement and selectivity profiling in native cell or tissue lysates using AC-MS.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".