Metalloporphyrin-Sensitized Ti Metal–Organic Framework Nanostructures for Visible-Light-Driven Hydrogen Evolution

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junli Xu, Zhengxi Li, Ran Wang, Xueqi Zhang, Xueping Zhang, Yingcong Wei*, Xiaochuan Hou* and Yunjian Liu*, 
{"title":"Metalloporphyrin-Sensitized Ti Metal–Organic Framework Nanostructures for Visible-Light-Driven Hydrogen Evolution","authors":"Junli Xu,&nbsp;Zhengxi Li,&nbsp;Ran Wang,&nbsp;Xueqi Zhang,&nbsp;Xueping Zhang,&nbsp;Yingcong Wei*,&nbsp;Xiaochuan Hou* and Yunjian Liu*,&nbsp;","doi":"10.1021/acsanm.4c0574710.1021/acsanm.4c05747","DOIUrl":null,"url":null,"abstract":"<p >Effective combination of the photosensitive and photoactive units in metal–organic frameworks (MOFs) is vital to achieving efficient solar energy utilization for superior photocatalytic efficiency. In this study, we successfully organize photosensitive metalloporphyrin ligands and photoactive building units (Ti-oxo clusters) uniformly at a molecular level within a heterobimetallic metal–organic framework (MOF) nanostructure, denoted as TMF(X), where X represents Zn, Co, or Cu. The well-accessible Ti sites possess a close proximity to the metalized porphyrin, which is favorable for the electron-transfer kinetics to the photocatalytic center for the redox reaction. Furthermore, the metal ions at the porphyrin center are able to induce electron redistribution, more negative conduction band potential, and enhanced light absorption, which boosts the photocatalytic H<sub>2</sub> evolution performance. Notably, the resulting heterobimetallic MOF nanostructures exhibited remarkably enhanced photocatalytic H<sub>2</sub> evolution performance, especially for the nano TMF(Zn) with a maximum H<sub>2</sub> evolution rate of 3.24 mmol g<sup>–1</sup> h<sup>–1</sup> under visible light irradiation, which is much higher than that of TMF (1.40 mmol g<sup>–1</sup> h<sup>–1</sup>). Our work opens up a way for highly efficient MOF-based photocatalysts for H<sub>2</sub> evolution and beyond.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 5","pages":"2179–2187 2179–2187"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05747","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective combination of the photosensitive and photoactive units in metal–organic frameworks (MOFs) is vital to achieving efficient solar energy utilization for superior photocatalytic efficiency. In this study, we successfully organize photosensitive metalloporphyrin ligands and photoactive building units (Ti-oxo clusters) uniformly at a molecular level within a heterobimetallic metal–organic framework (MOF) nanostructure, denoted as TMF(X), where X represents Zn, Co, or Cu. The well-accessible Ti sites possess a close proximity to the metalized porphyrin, which is favorable for the electron-transfer kinetics to the photocatalytic center for the redox reaction. Furthermore, the metal ions at the porphyrin center are able to induce electron redistribution, more negative conduction band potential, and enhanced light absorption, which boosts the photocatalytic H2 evolution performance. Notably, the resulting heterobimetallic MOF nanostructures exhibited remarkably enhanced photocatalytic H2 evolution performance, especially for the nano TMF(Zn) with a maximum H2 evolution rate of 3.24 mmol g–1 h–1 under visible light irradiation, which is much higher than that of TMF (1.40 mmol g–1 h–1). Our work opens up a way for highly efficient MOF-based photocatalysts for H2 evolution and beyond.

Abstract Image

可见光驱动析氢的金属卟啉敏化钛金属有机骨架纳米结构
金属有机骨架(MOFs)中光敏和光活性单元的有效结合是实现太阳能高效利用和光催化效率的关键。在这项研究中,我们成功地将光敏金属卟啉配体和光活性构建单元(ti -氧簇)在分子水平上均匀地组织在异质金属有机框架(MOF)纳米结构中,表示为TMF(X),其中X代表Zn, Co或Cu。易接近的钛位点与金属化卟啉的距离很近,这有利于电子向光催化中心转移进行氧化还原反应。此外,卟啉中心的金属离子能够诱导电子重分布,增加负导带电位,增强光吸收,从而提高光催化析氢性能。值得注意的是,所制备的杂双金属MOF纳米结构具有显著增强的光催化析氢性能,特别是纳米TMF(Zn)在可见光下的最大析氢速率为3.24 mmol g-1 h-1,远高于TMF(1.40 mmol g-1 h-1)。我们的工作为高效的基于mof的氢演化光催化剂开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信