Exploration of Novel Metabolic Mechanisms Underlying Primary Biliary Cholangitis Using Hepatic Metabolomics, Lipidomics, and Proteomics Analysis

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jie Bao, Xuan Zhang, Mao Ye, Yiqin Yang, Leiming Xu, Lulu He, Jixin Guo, Daoke Yao, Suhua Wang*, Ji Zhang* and Xin Tian*, 
{"title":"Exploration of Novel Metabolic Mechanisms Underlying Primary Biliary Cholangitis Using Hepatic Metabolomics, Lipidomics, and Proteomics Analysis","authors":"Jie Bao,&nbsp;Xuan Zhang,&nbsp;Mao Ye,&nbsp;Yiqin Yang,&nbsp;Leiming Xu,&nbsp;Lulu He,&nbsp;Jixin Guo,&nbsp;Daoke Yao,&nbsp;Suhua Wang*,&nbsp;Ji Zhang* and Xin Tian*,&nbsp;","doi":"10.1021/acs.jproteome.4c0070810.1021/acs.jproteome.4c00708","DOIUrl":null,"url":null,"abstract":"<p >Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC. We observed distinct lipidome remodeling in PBC with increased polyunsaturated fatty acid levels and augmented fatty acid β-oxidation (FAO), evidenced by the increased acylcarnitine levels and upregulated expression of proteins involved in FAO. Notably, PBC patients exhibited an increase in glucose-6-phosphate (G6P) and purines, alongside a reduction in pyruvate, suggesting impaired glycolysis and increased purines biosynthesis in PBC. Additionally, the accumulation of bile acids as well as a decrease in branched chain amino acids and aromatic amino acids were observed in PBC liver. We also observed an aberrant upregulation of proteins associated with ductular reaction, apoptosis, and autophagy. In conclusion, our study highlighted substantial metabolic reprogramming in glycolysis, fatty acid metabolism, and purine biosynthesis, coupled with aberrant upregulation of proteins associated with apoptosis and autophagy in PBC patients. Targeting the specific metabolic reprogramming may offer potential targets for the therapeutic intervention of PBC.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 2","pages":"562–578 562–578"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00708","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC. We observed distinct lipidome remodeling in PBC with increased polyunsaturated fatty acid levels and augmented fatty acid β-oxidation (FAO), evidenced by the increased acylcarnitine levels and upregulated expression of proteins involved in FAO. Notably, PBC patients exhibited an increase in glucose-6-phosphate (G6P) and purines, alongside a reduction in pyruvate, suggesting impaired glycolysis and increased purines biosynthesis in PBC. Additionally, the accumulation of bile acids as well as a decrease in branched chain amino acids and aromatic amino acids were observed in PBC liver. We also observed an aberrant upregulation of proteins associated with ductular reaction, apoptosis, and autophagy. In conclusion, our study highlighted substantial metabolic reprogramming in glycolysis, fatty acid metabolism, and purine biosynthesis, coupled with aberrant upregulation of proteins associated with apoptosis and autophagy in PBC patients. Targeting the specific metabolic reprogramming may offer potential targets for the therapeutic intervention of PBC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信