Surfactant-Assisted Synthesis of Metallic-Ag/Nickel Oxide on Graphitic Carbon Nitride Composite: An Electrochemical Investigation of Synthetic Vanillin
IF 8.2 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Surfactant-Assisted Synthesis of Metallic-Ag/Nickel Oxide on Graphitic Carbon Nitride Composite: An Electrochemical Investigation of Synthetic Vanillin","authors":"Muthukumar Govindaraj, Balasubramanian Sriram, Sea-Fue Wang, Magesh Kumar Muthukumaran, Sakthivel Kogularasu, Guo-Ping Chang-Chien, Arockia Selvi J.","doi":"10.1021/acsami.4c19099","DOIUrl":null,"url":null,"abstract":"In this study, we developed a sensor based on surfactant-assisted synthesis of metallic silver-enriched nickel oxide confined on graphitic carbon nitride (Ag/NiO/g-CN)-modified electrode to construct a sensitive and selective voltammetric sensor for detecting vanillin in confectionaries samples. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses confirmed the crystal structure and respective functional groups of the synthesized Ag/NiO/g-CN composite. The valence states of silver, nickel, oxygen, carbon, and nitrogen were analyzed using X-ray photoelectron spectroscopy (XPS), while energy-dispersive X-ray analysis (EDX) and morphological investigations revealed the elemental distribution and nano-structured particles, respectively. The electrocatalyst-modified electrode properties and electrochemical sensing performances were evaluated using different voltammetric and spectroscopic techniques. The Ag/NiO/g-CN composite, exhibiting a large active surface area, excellent conductivity, and synergistic interaction, proved to be a suitable electrode material for electrochemical sensor applications. The sensor demonstrated a detection limit of 0.9 nM and a broad linear range of 0.004–366.8 μM. Electrochemical investigations further highlighted the sensor’s excellent reproducibility, repeatability, fast response, and functional stability. The constructed sensor also exhibited outstanding selectivity against potential interferents and demonstrated its practical applicability by successfully detecting vanillin in spiked food samples.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"8 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19099","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed a sensor based on surfactant-assisted synthesis of metallic silver-enriched nickel oxide confined on graphitic carbon nitride (Ag/NiO/g-CN)-modified electrode to construct a sensitive and selective voltammetric sensor for detecting vanillin in confectionaries samples. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses confirmed the crystal structure and respective functional groups of the synthesized Ag/NiO/g-CN composite. The valence states of silver, nickel, oxygen, carbon, and nitrogen were analyzed using X-ray photoelectron spectroscopy (XPS), while energy-dispersive X-ray analysis (EDX) and morphological investigations revealed the elemental distribution and nano-structured particles, respectively. The electrocatalyst-modified electrode properties and electrochemical sensing performances were evaluated using different voltammetric and spectroscopic techniques. The Ag/NiO/g-CN composite, exhibiting a large active surface area, excellent conductivity, and synergistic interaction, proved to be a suitable electrode material for electrochemical sensor applications. The sensor demonstrated a detection limit of 0.9 nM and a broad linear range of 0.004–366.8 μM. Electrochemical investigations further highlighted the sensor’s excellent reproducibility, repeatability, fast response, and functional stability. The constructed sensor also exhibited outstanding selectivity against potential interferents and demonstrated its practical applicability by successfully detecting vanillin in spiked food samples.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.