Microscopic parametrizations for gate set tomography under coloured noise

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
P. Viñas, A. Bermudez
{"title":"Microscopic parametrizations for gate set tomography under coloured noise","authors":"P. Viñas, A. Bermudez","doi":"10.1038/s41534-025-00976-4","DOIUrl":null,"url":null,"abstract":"<p>Gate set tomography (GST) allows for a self-consistent characterization of noisy quantum information processors (QIPs). The standard approach treats QIPs as black boxes only constrained by the laws of physics, attaining full generality at a considerable resource cost: numerous circuits must be run in order to amplify each of the gate set parameters. In this work, we show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase, motivated by recent experiments with trapped-ion gates, enables a more efficient version of GST. Adopting the formalism of filter functions over the noise spectral densities, we discuss the minimal parametrizations of the gate set that include the effect of non-Markovian quantum evolutions during the individual gates. We compare the estimated gate sets obtained by our method and the standard long-sequence GST, discussing their accuracies and showcasing the advantages of the parametrized approach in terms of the sampling complexity.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"62 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00976-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Gate set tomography (GST) allows for a self-consistent characterization of noisy quantum information processors (QIPs). The standard approach treats QIPs as black boxes only constrained by the laws of physics, attaining full generality at a considerable resource cost: numerous circuits must be run in order to amplify each of the gate set parameters. In this work, we show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase, motivated by recent experiments with trapped-ion gates, enables a more efficient version of GST. Adopting the formalism of filter functions over the noise spectral densities, we discuss the minimal parametrizations of the gate set that include the effect of non-Markovian quantum evolutions during the individual gates. We compare the estimated gate sets obtained by our method and the standard long-sequence GST, discussing their accuracies and showcasing the advantages of the parametrized approach in terms of the sampling complexity.

Abstract Image

彩色噪声下门集层析成像的微观参数化
门集断层扫描(GST)允许噪声量子信息处理器(QIPs)的自一致表征。标准方法将qip视为仅受物理定律约束的黑盒,以相当大的资源成本获得完全的通性:必须运行大量电路才能放大每个门集参数。在这项工作中,我们展示了在驱动相位的时间相关噪声下量子门的微观参数化,由最近的捕获离子门实验激发,实现了更有效的GST版本。采用滤波函数在噪声谱密度上的形式,我们讨论了门集的最小参数化,其中包括各个门期间非马尔可夫量子演化的影响。我们比较了用我们的方法得到的估计门集和标准的长序列GST,讨论了它们的准确性,并展示了参数化方法在采样复杂度方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信