Young-Bin Kim, Jaehyeon Park, Jun-Young Kim, Seok-Beom Seo, Sun-Kyung Kim, Eungkyu Lee
{"title":"W-band frequency selective digital metasurface using active learning-based binary optimization","authors":"Young-Bin Kim, Jaehyeon Park, Jun-Young Kim, Seok-Beom Seo, Sun-Kyung Kim, Eungkyu Lee","doi":"10.1515/nanoph-2024-0628","DOIUrl":null,"url":null,"abstract":"The W-band is essential for applications like high-resolution imaging and advanced monitoring systems, but high-frequency signal attenuation leads to poor signal-to-noise ratios, posing challenges for compact and multi-channel systems. This necessitates distinct frequency selective surfaces (FSS) on a single substrate, a complex task due to inherent substrate resonance modes. In this study, we use a digital metasurface platform to design W-band FSS on a glass substrate, optimized through binary optimization assisted by active learning. The digital metasurface is composed of a periodic array of sub-wavelength unit cells, each containing hundreds of metal or dielectric pixels that act as binary states. By utilizing a machine learning model, we apply active learning-aided binary optimization to determine the optimal binary state configurations for a given target FSS profile. Specifically, we identify optimal designs for distinct FSS on a conventional glass substrate, with transmittance peaks at 79.3 GHz and Q-factors of 32.7.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"55 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0628","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The W-band is essential for applications like high-resolution imaging and advanced monitoring systems, but high-frequency signal attenuation leads to poor signal-to-noise ratios, posing challenges for compact and multi-channel systems. This necessitates distinct frequency selective surfaces (FSS) on a single substrate, a complex task due to inherent substrate resonance modes. In this study, we use a digital metasurface platform to design W-band FSS on a glass substrate, optimized through binary optimization assisted by active learning. The digital metasurface is composed of a periodic array of sub-wavelength unit cells, each containing hundreds of metal or dielectric pixels that act as binary states. By utilizing a machine learning model, we apply active learning-aided binary optimization to determine the optimal binary state configurations for a given target FSS profile. Specifically, we identify optimal designs for distinct FSS on a conventional glass substrate, with transmittance peaks at 79.3 GHz and Q-factors of 32.7.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.