Property-Based Design of Xanthine Derivatives as Potent and Orally Available TRPC4/5 Inhibitors for Depression and Anxiety

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Zhaoxiang Song, Huaduan Liang, Chu Xue, Shuxian Wang, Younan Ren, Zhuang Zhang, Tifei Xu, Bo Niu, Mengmeng Song, Mengru Liu, Xu Qin, Jie Li, Xianya Zhao, Fang Zhao, Jianhua Shen, Zhengyu Cao, Kai Wang
{"title":"Property-Based Design of Xanthine Derivatives as Potent and Orally Available TRPC4/5 Inhibitors for Depression and Anxiety","authors":"Zhaoxiang Song, Huaduan Liang, Chu Xue, Shuxian Wang, Younan Ren, Zhuang Zhang, Tifei Xu, Bo Niu, Mengmeng Song, Mengru Liu, Xu Qin, Jie Li, Xianya Zhao, Fang Zhao, Jianhua Shen, Zhengyu Cao, Kai Wang","doi":"10.1021/acs.jmedchem.4c02870","DOIUrl":null,"url":null,"abstract":"Transient receptor potential canonical channels 4 and 5 (TRPC4/5) are nonselective cation channels involved in emotional regulation, positioning them to be promising targets for treating mental disorders such as anxiety and depression. HC-070, a potent TRPC4/5 inhibitor, exhibits significant anxiolytic and antidepressant effects in animal models, though its drug-like properties require optimization. In this study, we applied a property-based drug design (PBDD) approach to optimize HC-070, leading to the discovery of compound <b>32</b>, which shows improved LipE and Fsp3 values, reduced hERG blocking activity, enhanced metabolic stability, increased aqueous solubility, and superior oral bioavailability. Oral administration of compound <b>32</b> in mouse models demonstrates anxiolytic and antidepressant efficacy comparable to fluoxetine. This study supports the therapeutic potential of TRPC4/5 inhibitors for mental disorders and identifies compound <b>32</b> as a promising candidate for further investigation. Furthermore, our work underscores the value of PBDD in optimizing lead compounds during drug discovery process.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"79 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02870","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transient receptor potential canonical channels 4 and 5 (TRPC4/5) are nonselective cation channels involved in emotional regulation, positioning them to be promising targets for treating mental disorders such as anxiety and depression. HC-070, a potent TRPC4/5 inhibitor, exhibits significant anxiolytic and antidepressant effects in animal models, though its drug-like properties require optimization. In this study, we applied a property-based drug design (PBDD) approach to optimize HC-070, leading to the discovery of compound 32, which shows improved LipE and Fsp3 values, reduced hERG blocking activity, enhanced metabolic stability, increased aqueous solubility, and superior oral bioavailability. Oral administration of compound 32 in mouse models demonstrates anxiolytic and antidepressant efficacy comparable to fluoxetine. This study supports the therapeutic potential of TRPC4/5 inhibitors for mental disorders and identifies compound 32 as a promising candidate for further investigation. Furthermore, our work underscores the value of PBDD in optimizing lead compounds during drug discovery process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信