Adam D. Alfieri, Tobia Ruth, Cheryl Lim, Jason Lynch, Deep Jariwala
{"title":"Effects of Self-Hybridized Exciton-Polaritons on TMDC Photovoltaics","authors":"Adam D. Alfieri, Tobia Ruth, Cheryl Lim, Jason Lynch, Deep Jariwala","doi":"10.1021/acs.nanolett.5c00399","DOIUrl":null,"url":null,"abstract":"Hybrid light-matter states called exciton-polaritons have been explored to improve excitonic photovoltaic (PV) and photodiode efficiency, but the use of closed cavity structures results in efficiency gains over a narrow band, with losses in the short circuit current density under solar illumination. In WX<sub>2</sub> (X = S, Se), the simultaneous large optical constants and strong exciton resonance can result in self-hybridized exciton-polaritons (SHEPs) emerging from the strong coupling of excitons and optical cavity modes formed by WX<sub>2</sub>. We perform thickness dependent device characterization of WS<sub>2</sub> and WSe<sub>2</sub> PVs to show that self-hybridized strong coupling enhances device efficiency on resonance while still enabling broadband absorption, resulting in improved short circuit current density under solar illumination. Ultimately, we leverage strong coupling to achieve external quantum efficiencies as high as 70% and record power conversion efficiencies approaching 7%. This result indicates the utility of SHEPs for light-energy harvesting applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"11 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00399","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid light-matter states called exciton-polaritons have been explored to improve excitonic photovoltaic (PV) and photodiode efficiency, but the use of closed cavity structures results in efficiency gains over a narrow band, with losses in the short circuit current density under solar illumination. In WX2 (X = S, Se), the simultaneous large optical constants and strong exciton resonance can result in self-hybridized exciton-polaritons (SHEPs) emerging from the strong coupling of excitons and optical cavity modes formed by WX2. We perform thickness dependent device characterization of WS2 and WSe2 PVs to show that self-hybridized strong coupling enhances device efficiency on resonance while still enabling broadband absorption, resulting in improved short circuit current density under solar illumination. Ultimately, we leverage strong coupling to achieve external quantum efficiencies as high as 70% and record power conversion efficiencies approaching 7%. This result indicates the utility of SHEPs for light-energy harvesting applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.