Shujin Lin, Qian Zhang, Shiyan Bai, Liwen Yang, Guannan Qin, Liyuan Wang, Wenbin Wang, Cui Cheng, Da Zhang, Chunhua Lu, Jifeng Yuan, Jingying Li, Huanghao Yang, Xiaofeng Gu, Xiao Han
{"title":"Beyond species and spatial boundaries: Enabling long-distance gene silencing in plants via guanidinium-siRNA nanoparticles","authors":"Shujin Lin, Qian Zhang, Shiyan Bai, Liwen Yang, Guannan Qin, Liyuan Wang, Wenbin Wang, Cui Cheng, Da Zhang, Chunhua Lu, Jifeng Yuan, Jingying Li, Huanghao Yang, Xiaofeng Gu, Xiao Han","doi":"10.1111/pbi.14575","DOIUrl":null,"url":null,"abstract":"RNA interference (RNAi) has been widely used in agriculture. However, it is well accepted that common methods of plant RNAi are species-dependent and lack systematic efficiency. This study designed a thiolated siRNA nanoparticle, guanidinium (Gu<sup>+</sup>)-containing disulfide assembled siRNA (Gu<sup>+</sup>-siRNA), demonstrating remarkable species independence and efficient systemic gene silencing across different plant species. Our results indicate that this approach effectively utilizes the plant vascular system to deliver siRNA, enabling long-distance gene silencing across both monocot and dicot plants, such as rice and Arabidopsis. By applying this method, we successfully targeted and silenced key genes like <i>STM</i>, <i>WER</i>, <i>MYB23</i>, <i>GD1</i>, <i>EIL1</i>, and <i>EIL2</i>, which regulate plant development and enhance salt tolerance. This delivery system significantly expands the application of RNAi technology across different plants, serving as a valuable tool for advancing agricultural biotechnology, enhancing crop resistance, and improving agricultural productivity, while aligning with global goals for sustainable food production and crop improvement.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"28 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14575","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA interference (RNAi) has been widely used in agriculture. However, it is well accepted that common methods of plant RNAi are species-dependent and lack systematic efficiency. This study designed a thiolated siRNA nanoparticle, guanidinium (Gu+)-containing disulfide assembled siRNA (Gu+-siRNA), demonstrating remarkable species independence and efficient systemic gene silencing across different plant species. Our results indicate that this approach effectively utilizes the plant vascular system to deliver siRNA, enabling long-distance gene silencing across both monocot and dicot plants, such as rice and Arabidopsis. By applying this method, we successfully targeted and silenced key genes like STM, WER, MYB23, GD1, EIL1, and EIL2, which regulate plant development and enhance salt tolerance. This delivery system significantly expands the application of RNAi technology across different plants, serving as a valuable tool for advancing agricultural biotechnology, enhancing crop resistance, and improving agricultural productivity, while aligning with global goals for sustainable food production and crop improvement.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.