Unusually High Thermopower in Molecular Junctions from Molecularly Induced Quantized States in Their Semimetal Leads

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mor Cohen Jungerman, Shachar Shmueli, Pini Shekhter, Yoram Selzer
{"title":"Unusually High Thermopower in Molecular Junctions from Molecularly Induced Quantized States in Their Semimetal Leads","authors":"Mor Cohen Jungerman, Shachar Shmueli, Pini Shekhter, Yoram Selzer","doi":"10.1021/acs.nanolett.4c05852","DOIUrl":null,"url":null,"abstract":"The efficiency of a thermoelectric (TE) device depends on the extent to which its electron/hole transport symmetry at the Fermi level is broken. This requirement makes molecular junctions promising for TE applications as their transmission characteristics are highly nonlinear. Yet, in the absence of an efficient method to tune the position of the Fermi level within their transmission landscape, the typical Seebeck values of metal–molecules–metal junctions are |<i>S</i>| ≤ 100 μV/K, while considering their electrical and thermal conductance, it should be |<i>S</i>| ≥ 1 mV/K to be relevant for applications. Here, we report metal–molecules–semimetal junctions with |<i>S</i>| in the required mV/K range. This is achieved by molecularly induced quantized two-dimensional (2D) interfacial states within the semimetal that result in nonlinear features in their transmission properties. The importance of the presented approach goes beyond TE applications as it demonstrates a novel strategy to form and tune 2D interfacial layers within bulk materials by molecular monolayers.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05852","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of a thermoelectric (TE) device depends on the extent to which its electron/hole transport symmetry at the Fermi level is broken. This requirement makes molecular junctions promising for TE applications as their transmission characteristics are highly nonlinear. Yet, in the absence of an efficient method to tune the position of the Fermi level within their transmission landscape, the typical Seebeck values of metal–molecules–metal junctions are |S| ≤ 100 μV/K, while considering their electrical and thermal conductance, it should be |S| ≥ 1 mV/K to be relevant for applications. Here, we report metal–molecules–semimetal junctions with |S| in the required mV/K range. This is achieved by molecularly induced quantized two-dimensional (2D) interfacial states within the semimetal that result in nonlinear features in their transmission properties. The importance of the presented approach goes beyond TE applications as it demonstrates a novel strategy to form and tune 2D interfacial layers within bulk materials by molecular monolayers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信