Ultrafast Laser Driven Ferromagnetic-Antiferromagnetic Skyrmion Switching in 2D Topological Magnet

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-07 DOI:10.1002/smll.202412320
Kaiying Dou, Wenhui Du, Zhonglin He, Ying Dai, Baibiao Huang, Yandong Ma
{"title":"Ultrafast Laser Driven Ferromagnetic-Antiferromagnetic Skyrmion Switching in 2D Topological Magnet","authors":"Kaiying Dou, Wenhui Du, Zhonglin He, Ying Dai, Baibiao Huang, Yandong Ma","doi":"10.1002/smll.202412320","DOIUrl":null,"url":null,"abstract":"Light-spin coupling is an attractive phenomenon from the standpoints of fundamental physics and device applications, and has spurred rapid development recently. Whereas the current efforts are devoted to trivial magnetism, the interplay between light and nontrivial spin properties of topological magnetism is little known. Here, using first principles, rt-TDDFT and atomic spin simulations, the evolution of topological spin properties of monolayer CrInSe<sub>3</sub> under laser is explored, establishing the ultrafast ferromagnetic-antiferromagnetic skyrmion reversal. The physics correlates to the laser-induced significant spin-selective charge transfer, demagnetization, and time-dependent magnetic interactions. Especially, an essential switching from ferromagnetic to antiferromagnetic exchange is generated under light irradiation. More importantly, dynamics of topological magnetic physics shows that this process accompanies with the evolution of topological magnetism from ferromagnetic to antiferromagnetic skyrmions, manifesting intriguing interplay between light and topological spin properties. The work provides a novel approach toward the highly desired ultrafast control of topological magnetism.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412320","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light-spin coupling is an attractive phenomenon from the standpoints of fundamental physics and device applications, and has spurred rapid development recently. Whereas the current efforts are devoted to trivial magnetism, the interplay between light and nontrivial spin properties of topological magnetism is little known. Here, using first principles, rt-TDDFT and atomic spin simulations, the evolution of topological spin properties of monolayer CrInSe3 under laser is explored, establishing the ultrafast ferromagnetic-antiferromagnetic skyrmion reversal. The physics correlates to the laser-induced significant spin-selective charge transfer, demagnetization, and time-dependent magnetic interactions. Especially, an essential switching from ferromagnetic to antiferromagnetic exchange is generated under light irradiation. More importantly, dynamics of topological magnetic physics shows that this process accompanies with the evolution of topological magnetism from ferromagnetic to antiferromagnetic skyrmions, manifesting intriguing interplay between light and topological spin properties. The work provides a novel approach toward the highly desired ultrafast control of topological magnetism.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信