Yang Liu, Ruchika Rajput, Md Torikul Islam, Ilenne Del Valle, Tao Yao, Rekha Agrawal, Brandon A. Boone, Carrie A. Eckert, Paul E. Abraham, Jin-Gui Chen, Gerald A. Tuskan, Xiaohan Yang
{"title":"A split ribozyme system for in vivo plant RNA imaging and genetic engineering","authors":"Yang Liu, Ruchika Rajput, Md Torikul Islam, Ilenne Del Valle, Tao Yao, Rekha Agrawal, Brandon A. Boone, Carrie A. Eckert, Paul E. Abraham, Jin-Gui Chen, Gerald A. Tuskan, Xiaohan Yang","doi":"10.1111/pbi.14612","DOIUrl":null,"url":null,"abstract":"RNA plays a central role in plants, governing various cellular and physiological processes. Monitoring its dynamic abundance provides a discerning understanding of molecular mechanisms underlying plant responses to internal (developmental) and external (environmental) stimuli, paving the way for advances in plant biotechnology to engineer crops with improved resilience, quality and productivity. In general, traditional methods for analysis of RNA abundance in plants require destructive, labour-intensive and time-consuming assays. To overcome these limitations, we developed a transformative innovation for <i>in vivo</i> RNA imaging in plants. Specifically, we established a synthetic split ribozyme system that converts various RNA signals to orthogonal protein outputs, enabling <i>in vivo</i> visualisation of various RNA signals in plants. We demonstrated the utility of this system in transient expression experiments (i.e., leaf infiltration in <i>Nicotiana benthamiana</i>) to detect RNAs derived from transgenes and tobacco rattle virus, respectively. Also, we successfully engineered a split ribozyme-based biosensor in <i>Arabidopsis thaliana</i> for <i>in vivo</i> visualisation of endogenous gene expression at the cellular level, demonstrating the feasibility of multi-scale (e.g., cellular and tissue level) RNA imaging in plants. Furthermore, we developed a platform for easy incorporation of different protein outputs, allowing for flexible choice of reporters to optimise the detection of target RNAs.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"141 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14612","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA plays a central role in plants, governing various cellular and physiological processes. Monitoring its dynamic abundance provides a discerning understanding of molecular mechanisms underlying plant responses to internal (developmental) and external (environmental) stimuli, paving the way for advances in plant biotechnology to engineer crops with improved resilience, quality and productivity. In general, traditional methods for analysis of RNA abundance in plants require destructive, labour-intensive and time-consuming assays. To overcome these limitations, we developed a transformative innovation for in vivo RNA imaging in plants. Specifically, we established a synthetic split ribozyme system that converts various RNA signals to orthogonal protein outputs, enabling in vivo visualisation of various RNA signals in plants. We demonstrated the utility of this system in transient expression experiments (i.e., leaf infiltration in Nicotiana benthamiana) to detect RNAs derived from transgenes and tobacco rattle virus, respectively. Also, we successfully engineered a split ribozyme-based biosensor in Arabidopsis thaliana for in vivo visualisation of endogenous gene expression at the cellular level, demonstrating the feasibility of multi-scale (e.g., cellular and tissue level) RNA imaging in plants. Furthermore, we developed a platform for easy incorporation of different protein outputs, allowing for flexible choice of reporters to optimise the detection of target RNAs.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.