{"title":"Phenotypic plasticity and integration synergistically enhance plant adaptability to flooding and nitrogen stresses","authors":"Jun Yang, Zhenxing Zhou, Wanyu Qi, Xianlei Gao, Yue Wang, Xiangtao Wang, Xuemei Yi, Maohua Ma, Shengjun Wu","doi":"10.1007/s11104-025-07230-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Plants respond to stress gradients by modifying various aspects of their morphology, physiology, architecture, allocation and mycorrhizal fungi. Yet, understanding how plants adapt to resource stress requires a comprehensive, integrated perspective that considers not only the consistency and variability of individual trait adjustments, but also the interplay between two key mechanisms: phenotypic plasticity (the direction and magnitude of trait adjustment) and phenotypic integration (the degree and pattern of trait covariation). Despite their importance, the coordination of these mechanisms in driving adaptive responses remains poorly understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>To address these gaps, we measured the adjustment of 27 above- and below-ground traits across three dominant species (<i>Cynodon dactylon</i>, <i>Xanthium strumarium</i>, and <i>Bidens tripartita</i>), and explored trait networks, and the relationship between phenotypic plasticity and phenotypic integration in response to flooding and/or nitrogen in riparian habitats on the Three Gorges Reservoir area, China.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results show that both flooding and nitrogen stress induced shifts in species traits towards more acquisitive strategy, characterized by larger leaves, higher leaf nutrient concentrations, finer roots, larger specific root lengths, greater branching intensity, and elevated carboxylate concentrations. Flooding altered the hub trait with the highest centrality in the trait network from root branching intensity to leaf phosphorus content, while nitrogen stress shifted the hub trait from leaf area to root phosphorus content. Furthermore, a positive correlation was observed between phenotypic plasticity and integration, indicating that higher plasticity of functional traits facilitated better integration with other traits under flooding and nitrogen stress.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>These findings suggest that plants exhibit more acquisitive traits in habitats experiencing flooding and/or nitrogen stress. Furthermore, a comprehensive assessment of phenotypic plasticity and its integration under compound stresses underscores the critical role of synergies between plasticity and integration in enhancing plant adaptability to environmental changes.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"103 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07230-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Plants respond to stress gradients by modifying various aspects of their morphology, physiology, architecture, allocation and mycorrhizal fungi. Yet, understanding how plants adapt to resource stress requires a comprehensive, integrated perspective that considers not only the consistency and variability of individual trait adjustments, but also the interplay between two key mechanisms: phenotypic plasticity (the direction and magnitude of trait adjustment) and phenotypic integration (the degree and pattern of trait covariation). Despite their importance, the coordination of these mechanisms in driving adaptive responses remains poorly understood.
Methods
To address these gaps, we measured the adjustment of 27 above- and below-ground traits across three dominant species (Cynodon dactylon, Xanthium strumarium, and Bidens tripartita), and explored trait networks, and the relationship between phenotypic plasticity and phenotypic integration in response to flooding and/or nitrogen in riparian habitats on the Three Gorges Reservoir area, China.
Results
The results show that both flooding and nitrogen stress induced shifts in species traits towards more acquisitive strategy, characterized by larger leaves, higher leaf nutrient concentrations, finer roots, larger specific root lengths, greater branching intensity, and elevated carboxylate concentrations. Flooding altered the hub trait with the highest centrality in the trait network from root branching intensity to leaf phosphorus content, while nitrogen stress shifted the hub trait from leaf area to root phosphorus content. Furthermore, a positive correlation was observed between phenotypic plasticity and integration, indicating that higher plasticity of functional traits facilitated better integration with other traits under flooding and nitrogen stress.
Conclusions
These findings suggest that plants exhibit more acquisitive traits in habitats experiencing flooding and/or nitrogen stress. Furthermore, a comprehensive assessment of phenotypic plasticity and its integration under compound stresses underscores the critical role of synergies between plasticity and integration in enhancing plant adaptability to environmental changes.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.