Dissolved Organic Matter Within Soil Aggregates in Forest Restoration: Insights From Optical Properties

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Gui-bang Zhang, Qing-wei Zhang, Wen-xuan Kuan, Jian Wang, Jun'e Liu, Hao Wang, Ming Li
{"title":"Dissolved Organic Matter Within Soil Aggregates in Forest Restoration: Insights From Optical Properties","authors":"Gui-bang Zhang, Qing-wei Zhang, Wen-xuan Kuan, Jian Wang, Jun'e Liu, Hao Wang, Ming Li","doi":"10.1002/ldr.5509","DOIUrl":null,"url":null,"abstract":"Forest restoration with <i>Robinia pseudoacacia</i> L. has many benefits, and dynamics of dissolved organic matter (DOM) might provide insight into soil restoration. Nevertheless, studies regarding the changes in the DOM within soil aggregates during artificial forest restoration are relatively limited in semiarid regions. Soil aggregates were collected from the topsoil, middle soil, and subsoil layers (i.e., 0–20, 30–50, and 80–100 cm) at six forests (i.e., <i>R. pseudoacacia</i> L.) lands with various restoration ages in a typical semiarid region. The variations of DOM properties in silt + clay size classes, microaggregates and macroaggregates (i.e., &lt; 0.053 mm, 0.053–0.25 mm, and &gt; 0.25 mm) were explored by UV–visible and three-dimensional excited emission matrix spectral. Overall, dissolved organic carbon (DOC) content (41.24–119.82 mg kg<sup>−1</sup>) of soil aggregates generally increased with restoration age. The DOC content in topsoil aggregates was 3.11–7.13 times larger than those from the other two soil layers. The molecular weight, aromaticity degree, and humification degree had the same trends as that of DOC content with soil depth. The DOC content and aromaticity degree of DOM in macroaggregates were 1.26–4.27 times and 1.01–1.18 times higher than those in microaggregates and silt + clay size classes at most soil layers, respectively. These variations in DOM within soil aggregates were primarily attributed to the changes in soil texture and the densities of plant roots and litter during the forest restoration. The study reveals the positive impact of forest restoration on the increase of DOC content, providing scientific evidence for soil management.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"79 2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5509","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forest restoration with Robinia pseudoacacia L. has many benefits, and dynamics of dissolved organic matter (DOM) might provide insight into soil restoration. Nevertheless, studies regarding the changes in the DOM within soil aggregates during artificial forest restoration are relatively limited in semiarid regions. Soil aggregates were collected from the topsoil, middle soil, and subsoil layers (i.e., 0–20, 30–50, and 80–100 cm) at six forests (i.e., R. pseudoacacia L.) lands with various restoration ages in a typical semiarid region. The variations of DOM properties in silt + clay size classes, microaggregates and macroaggregates (i.e., < 0.053 mm, 0.053–0.25 mm, and > 0.25 mm) were explored by UV–visible and three-dimensional excited emission matrix spectral. Overall, dissolved organic carbon (DOC) content (41.24–119.82 mg kg−1) of soil aggregates generally increased with restoration age. The DOC content in topsoil aggregates was 3.11–7.13 times larger than those from the other two soil layers. The molecular weight, aromaticity degree, and humification degree had the same trends as that of DOC content with soil depth. The DOC content and aromaticity degree of DOM in macroaggregates were 1.26–4.27 times and 1.01–1.18 times higher than those in microaggregates and silt + clay size classes at most soil layers, respectively. These variations in DOM within soil aggregates were primarily attributed to the changes in soil texture and the densities of plant roots and litter during the forest restoration. The study reveals the positive impact of forest restoration on the increase of DOC content, providing scientific evidence for soil management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信