1,3-Propanediol-Based Supported Deep Eutectic Liquid Membranes as an Efficient Material for Carbon Dioxide Separation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Bartosz Nowosielski, Dorota Warmińska, Iwona Cichowska-Kopczyńska
{"title":"1,3-Propanediol-Based Supported Deep Eutectic Liquid Membranes as an Efficient Material for Carbon Dioxide Separation","authors":"Bartosz Nowosielski, Dorota Warmińska, Iwona Cichowska-Kopczyńska","doi":"10.1021/acs.iecr.4c02352","DOIUrl":null,"url":null,"abstract":"In this study, new polypropylene-based supported liquid membranes (SLMs) with a liquid phase composed of deep eutectic solvents (DESs) containing choline chloride, acetylcholine chloride, or tetrabutylammonium chloride and 1,3-propanediol were introduced. Fourier transform infrared spectroscopy was employed to verify DES formation, and the thermal stability was assessed using thermogravimetric analysis. The physicochemical properties, namely, density, refractive index, and viscosity, of DESs and their carbon dioxide capacities were measured across a temperature range of 293.15–313.15 K. The study examined how the structure of the hydrogen bond acceptor and the molar ratio of acceptor to donor influenced the properties and potential for CO<sub>2</sub> separation. The permeability of CO<sub>2</sub> and N<sub>2</sub> through DES-based SLMs was measured, and the ideal selectivity for CO<sub>2</sub> over N<sub>2</sub> was evaluated. Results indicated that the permeability of CO<sub>2</sub> through SLMs containing 1,3-propanediol-based DES ranged from 89 to 123 barrer at 293.15 K, with an ideal CO<sub>2</sub>/N<sub>2</sub> selectivity between 22 and 32. The performance of the studied DES-SLMs demonstrates that they are a viable alternative to commercially used CO<sub>2</sub> separation methods due to their environmentally friendly nature and comparable gas separation capabilities.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02352","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, new polypropylene-based supported liquid membranes (SLMs) with a liquid phase composed of deep eutectic solvents (DESs) containing choline chloride, acetylcholine chloride, or tetrabutylammonium chloride and 1,3-propanediol were introduced. Fourier transform infrared spectroscopy was employed to verify DES formation, and the thermal stability was assessed using thermogravimetric analysis. The physicochemical properties, namely, density, refractive index, and viscosity, of DESs and their carbon dioxide capacities were measured across a temperature range of 293.15–313.15 K. The study examined how the structure of the hydrogen bond acceptor and the molar ratio of acceptor to donor influenced the properties and potential for CO2 separation. The permeability of CO2 and N2 through DES-based SLMs was measured, and the ideal selectivity for CO2 over N2 was evaluated. Results indicated that the permeability of CO2 through SLMs containing 1,3-propanediol-based DES ranged from 89 to 123 barrer at 293.15 K, with an ideal CO2/N2 selectivity between 22 and 32. The performance of the studied DES-SLMs demonstrates that they are a viable alternative to commercially used CO2 separation methods due to their environmentally friendly nature and comparable gas separation capabilities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信