Graph Neural Networks and Applied Linear Algebra

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2025-02-06 DOI:10.1137/23m1609786
Nicholas S. Moore, Eric C. Cyr, Peter Ohm, Christopher M. Siefert, Raymond S. Tuminaro
{"title":"Graph Neural Networks and Applied Linear Algebra","authors":"Nicholas S. Moore, Eric C. Cyr, Peter Ohm, Christopher M. Siefert, Raymond S. Tuminaro","doi":"10.1137/23m1609786","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 67, Issue 1, Page 141-175, March 2025. <br/> Abstract.Sparse matrix computations are ubiquitous in scientific computing. Given the recent interest in scientific machine learning, it is natural to ask how sparse matrix computations can leverage neural networks (NNs). Unfortunately, multilayer perceptron (MLP) NNs are typically not natural for either graph or sparse matrix computations. The issue lies with the fact that MLPs require fixed-sized inputs, while scientific applications generally generate sparse matrices with arbitrary dimensions and a wide range of different nonzero patterns (or matrix graph vertex interconnections). While convolutional NNs could possibly address matrix graphs where all vertices have the same number of nearest neighbors, a more general approach is needed for arbitrary sparse matrices, e.g., those arising from discretized partial differential equations on unstructured meshes. Graph neural networks (GNNs) are one such approach suitable to sparse matrices. The key idea is to define aggregation functions (e.g., summations) that operate on variable-size input data to produce data of a fixed output size so that MLPs can be applied. The goal of this paper is to provide an introduction to GNNs for a numerical linear algebra audience. Concrete GNN examples are provided to illustrate how many common linear algebra tasks can be accomplished using GNNs. We focus on iterative and multigrid methods that employ computational kernels such as matrix-vector products, interpolation, relaxation methods, and strength-of-connection measures. Our GNN examples include cases where parameters are determined a priori as well as cases where parameters must be learned. The intent of this paper is to help computational scientists understand how GNNs can be used to adapt machine learning concepts to computational tasks associated with sparse matrices. It is hoped that this understanding will further stimulate data-driven extensions of classical sparse linear algebra tasks.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"40 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1609786","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 67, Issue 1, Page 141-175, March 2025.
Abstract.Sparse matrix computations are ubiquitous in scientific computing. Given the recent interest in scientific machine learning, it is natural to ask how sparse matrix computations can leverage neural networks (NNs). Unfortunately, multilayer perceptron (MLP) NNs are typically not natural for either graph or sparse matrix computations. The issue lies with the fact that MLPs require fixed-sized inputs, while scientific applications generally generate sparse matrices with arbitrary dimensions and a wide range of different nonzero patterns (or matrix graph vertex interconnections). While convolutional NNs could possibly address matrix graphs where all vertices have the same number of nearest neighbors, a more general approach is needed for arbitrary sparse matrices, e.g., those arising from discretized partial differential equations on unstructured meshes. Graph neural networks (GNNs) are one such approach suitable to sparse matrices. The key idea is to define aggregation functions (e.g., summations) that operate on variable-size input data to produce data of a fixed output size so that MLPs can be applied. The goal of this paper is to provide an introduction to GNNs for a numerical linear algebra audience. Concrete GNN examples are provided to illustrate how many common linear algebra tasks can be accomplished using GNNs. We focus on iterative and multigrid methods that employ computational kernels such as matrix-vector products, interpolation, relaxation methods, and strength-of-connection measures. Our GNN examples include cases where parameters are determined a priori as well as cases where parameters must be learned. The intent of this paper is to help computational scientists understand how GNNs can be used to adapt machine learning concepts to computational tasks associated with sparse matrices. It is hoped that this understanding will further stimulate data-driven extensions of classical sparse linear algebra tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信