Chaoqun Wang , Kaili Lin , Zhu Zhang , Yan Pan , Qiuping Miao , Xiaohe Han , Zhang Zhang , Peili Zhu , Jun Yang , Yinghui Peng , Ken Kin-Lam Yung , Lei Shi , Shiqing Zhang
{"title":"Adolescent exposure to micro/nanoplastics induces cognitive impairments in mice with neuronal morphological damage and multi-omic alterations","authors":"Chaoqun Wang , Kaili Lin , Zhu Zhang , Yan Pan , Qiuping Miao , Xiaohe Han , Zhang Zhang , Peili Zhu , Jun Yang , Yinghui Peng , Ken Kin-Lam Yung , Lei Shi , Shiqing Zhang","doi":"10.1016/j.envint.2025.109323","DOIUrl":null,"url":null,"abstract":"<div><div>Polystyrene micro/nanoplastics (MPs/NPs) are globally recognized environmental concerns due to their widespread pollution and detrimental effects on physiological functions. However, the neurotoxic effects and underlying mechanisms of MPs/NPs on brain function in adolescents remain incompletely understood. This study investigated the effects of polystyrene MPs/NPs on neurobehavioral function in adolescent mice, utilizing multi-omic analysis and molecular biology assays to explore potential mechanisms. Following oral exposure of MPs (5 μm) or NPs (0.5 μm) at 0.5 mg/day for 4 weeks, NPs induced more severe cognitive impairment in mice than MPs, as assessed by the Morris water maze and Y-maze tests. This impairment might be associated with the neuron loss and neurogenesis inhibition caused by NPs, while dendritic spine loss mediated by MPs in the hippocampus. Furthermore, analysis of hippocampal transcriptome and Western blotting indicated the potential involvement of the PI3K/AKT pathway in NPs-induced neurotoxicity. Meanwhile, exposure to NPs induced more pronounced disruptions in the hippocampal metabolome and gut microbiota, and strong correlations were observed between changes in hippocampal metabolites and gut bacteria. This study elucidated the toxicity mechanism of MPs and NPs in inducing cognitive impairment in adolescent mice, providing insights into their toxicological impacts and potential strategies for intervention.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"197 ","pages":"Article 109323"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025000741","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polystyrene micro/nanoplastics (MPs/NPs) are globally recognized environmental concerns due to their widespread pollution and detrimental effects on physiological functions. However, the neurotoxic effects and underlying mechanisms of MPs/NPs on brain function in adolescents remain incompletely understood. This study investigated the effects of polystyrene MPs/NPs on neurobehavioral function in adolescent mice, utilizing multi-omic analysis and molecular biology assays to explore potential mechanisms. Following oral exposure of MPs (5 μm) or NPs (0.5 μm) at 0.5 mg/day for 4 weeks, NPs induced more severe cognitive impairment in mice than MPs, as assessed by the Morris water maze and Y-maze tests. This impairment might be associated with the neuron loss and neurogenesis inhibition caused by NPs, while dendritic spine loss mediated by MPs in the hippocampus. Furthermore, analysis of hippocampal transcriptome and Western blotting indicated the potential involvement of the PI3K/AKT pathway in NPs-induced neurotoxicity. Meanwhile, exposure to NPs induced more pronounced disruptions in the hippocampal metabolome and gut microbiota, and strong correlations were observed between changes in hippocampal metabolites and gut bacteria. This study elucidated the toxicity mechanism of MPs and NPs in inducing cognitive impairment in adolescent mice, providing insights into their toxicological impacts and potential strategies for intervention.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.