Noah Wake, Shuo-Lin Weng, Tongyin Zheng, Szu-Huan Wang, Valentin Kirilenko, Jeetain Mittal, Nicolas L. Fawzi
{"title":"Expanding the molecular grammar of polar residues and arginine in FUS phase separation","authors":"Noah Wake, Shuo-Lin Weng, Tongyin Zheng, Szu-Huan Wang, Valentin Kirilenko, Jeetain Mittal, Nicolas L. Fawzi","doi":"10.1038/s41589-024-01828-6","DOIUrl":null,"url":null,"abstract":"<p>A molecular grammar governing low-complexity prion-like domain phase separation (PS) has identified tyrosine and arginine as primary drivers via aromatic–aromatic and aromatic–arginine interactions. Here we show that additional residues and contacts contribute to PS, highlighting the need to include these contributions in PS theories and models. Tyrosine and arginine make important contacts beyond tyrosine–tyrosine and tyrosine–arginine, including arginine–arginine contacts. Among polar residues, glutamine contributes to PS with sequence and position specificity, contacting tyrosine, arginine and other residues, both before PS and in condensed phases. The flexibility of glycine enhances PS by allowing favorable contacts between adjacent residues and inhibits the liquid-to-solid transition. Polar residues also make sequence-specific contributions to liquid-to-solid transition, with serine positions linked to the formation of an amyloid-core structure by the FUS low-complexity domain. Hence, an extended molecular grammar expands the role of arginine and polar residues in prion-like domain protein PS and reveals the position dependence of residue contribution to solidification.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"26 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01828-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A molecular grammar governing low-complexity prion-like domain phase separation (PS) has identified tyrosine and arginine as primary drivers via aromatic–aromatic and aromatic–arginine interactions. Here we show that additional residues and contacts contribute to PS, highlighting the need to include these contributions in PS theories and models. Tyrosine and arginine make important contacts beyond tyrosine–tyrosine and tyrosine–arginine, including arginine–arginine contacts. Among polar residues, glutamine contributes to PS with sequence and position specificity, contacting tyrosine, arginine and other residues, both before PS and in condensed phases. The flexibility of glycine enhances PS by allowing favorable contacts between adjacent residues and inhibits the liquid-to-solid transition. Polar residues also make sequence-specific contributions to liquid-to-solid transition, with serine positions linked to the formation of an amyloid-core structure by the FUS low-complexity domain. Hence, an extended molecular grammar expands the role of arginine and polar residues in prion-like domain protein PS and reveals the position dependence of residue contribution to solidification.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.