Analog parallel processor for broadband multifunctional integrated system based on silicon photonic platform

IF 20.6 Q1 OPTICS
Na Qian, Defu Zhou, Haowen Shu, Ming Zhang, Xingjun Wang, Daoxin Dai, Xiao Deng, Weiwen Zou
{"title":"Analog parallel processor for broadband multifunctional integrated system based on silicon photonic platform","authors":"Na Qian, Defu Zhou, Haowen Shu, Ming Zhang, Xingjun Wang, Daoxin Dai, Xiao Deng, Weiwen Zou","doi":"10.1038/s41377-025-01753-w","DOIUrl":null,"url":null,"abstract":"<p>Sharing the hardware platform between diverse information systems to establish full cooperation among different functionalities has attracted substantial attention. However, broadband multifunctional integrated systems with large operating frequency ranges are challenging due to the bandwidth and computing speed restrictions of electronic circuitry. Here, we report an analog parallel processor (APP) based on the silicon photonic platform that directly discretizes and parallelizes the broadband signal in the analog domain. The APP first discretizes the signal with the optical frequency comb and then adopts optical dynamic phase interference to reassign the analog signal into 2<sup>N</sup> parallel sequences. Via photonic analog parallelism, data rate and data volume in each sequence are simultaneously compressed, which mitigates the requirement on each parallel computing core. Moreover, the fusion of the outputs from each computing core is equivalent to directly processing broadband signals. In the proof-of-concept experiment, two-channel analog parallel processing of broadband radar signals and high-speed communication signals is implemented on the single photonic integrated circuit. The bandwidth of broadband radar signal is 6 GHz and the range resolution of 2.69 cm is achieved. The wireless communication rate of 8 Gbit/s is also validated. Breaking the bandwidth and speed limitations of the single-computing core along with further exploring the multichannel potential of this architecture, we anticipate that the proposed APP will accelerate the development of powerful opto-electronic processors as critical support for applications such as satellite networks and intelligent driving.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"55 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01753-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sharing the hardware platform between diverse information systems to establish full cooperation among different functionalities has attracted substantial attention. However, broadband multifunctional integrated systems with large operating frequency ranges are challenging due to the bandwidth and computing speed restrictions of electronic circuitry. Here, we report an analog parallel processor (APP) based on the silicon photonic platform that directly discretizes and parallelizes the broadband signal in the analog domain. The APP first discretizes the signal with the optical frequency comb and then adopts optical dynamic phase interference to reassign the analog signal into 2N parallel sequences. Via photonic analog parallelism, data rate and data volume in each sequence are simultaneously compressed, which mitigates the requirement on each parallel computing core. Moreover, the fusion of the outputs from each computing core is equivalent to directly processing broadband signals. In the proof-of-concept experiment, two-channel analog parallel processing of broadband radar signals and high-speed communication signals is implemented on the single photonic integrated circuit. The bandwidth of broadband radar signal is 6 GHz and the range resolution of 2.69 cm is achieved. The wireless communication rate of 8 Gbit/s is also validated. Breaking the bandwidth and speed limitations of the single-computing core along with further exploring the multichannel potential of this architecture, we anticipate that the proposed APP will accelerate the development of powerful opto-electronic processors as critical support for applications such as satellite networks and intelligent driving.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信