Sequential hydrogenation enhanced by bidirectional hydrogen spillover over cascade catalyst

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-02-07 DOI:10.1002/aic.18764
Shuai Wang, Daowei Gao, Rongyao Wang, Yong Wang, Yipin Lv, Lianghao Song, Huaiqing Zhao, Xuchuan Jiang, Riming Hu, Guozhu Chen
{"title":"Sequential hydrogenation enhanced by bidirectional hydrogen spillover over cascade catalyst","authors":"Shuai Wang, Daowei Gao, Rongyao Wang, Yong Wang, Yipin Lv, Lianghao Song, Huaiqing Zhao, Xuchuan Jiang, Riming Hu, Guozhu Chen","doi":"10.1002/aic.18764","DOIUrl":null,"url":null,"abstract":"Formulating a synergetic strategy to govern the catalytic function of dual metal sites is paramount to achieving precise control of cascade reactions. Herein, we construct a dual-site cascade catalyst with Pt and Ru species localized in the micropores and mesopores of zeolite, respectively. This architecture enables the spatial separation of Pt and Ru sites in nanoscale proximity. Compared to mono/bi-metallic catalysts, this cascade catalyst enables a 4.4–9.5 times enhancement in activity during the sequential hydrogenation of nitroaromatics to cyclohexylamine. Particularly, bidirectional hydrogen spillover assists hydrogenation between Pt and Ru sites is confirmed, where active hydrogen migrates from the less catalytic activity metal to the adjacent metal sites during the first/second step in the cascade reaction. Characterization studies and density functional theory calculations suggest that bidirectional hydrogen spillover enhances the coverage of active hydrogen at the active sites for each hydrogenation step, thereby reducing the energy barrier of the rate-controlling step. This intriguing phenomenon reveals the mechanism of accelerated hydrogenation and presents an opportunity for devising immensely efficient cascade catalysts.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"40 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18764","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Formulating a synergetic strategy to govern the catalytic function of dual metal sites is paramount to achieving precise control of cascade reactions. Herein, we construct a dual-site cascade catalyst with Pt and Ru species localized in the micropores and mesopores of zeolite, respectively. This architecture enables the spatial separation of Pt and Ru sites in nanoscale proximity. Compared to mono/bi-metallic catalysts, this cascade catalyst enables a 4.4–9.5 times enhancement in activity during the sequential hydrogenation of nitroaromatics to cyclohexylamine. Particularly, bidirectional hydrogen spillover assists hydrogenation between Pt and Ru sites is confirmed, where active hydrogen migrates from the less catalytic activity metal to the adjacent metal sites during the first/second step in the cascade reaction. Characterization studies and density functional theory calculations suggest that bidirectional hydrogen spillover enhances the coverage of active hydrogen at the active sites for each hydrogenation step, thereby reducing the energy barrier of the rate-controlling step. This intriguing phenomenon reveals the mechanism of accelerated hydrogenation and presents an opportunity for devising immensely efficient cascade catalysts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信