Looking at Infrared Background Radiation Anisotropies with Spitzer: Large-scale Anisotropies and Their Implications

A. Kashlinsky, Richard G. Arendt, M. L. N. Ashby, J. Kruk and N. Odegard
{"title":"Looking at Infrared Background Radiation Anisotropies with Spitzer: Large-scale Anisotropies and Their Implications","authors":"A. Kashlinsky, Richard G. Arendt, M. L. N. Ashby, J. Kruk and N. Odegard","doi":"10.3847/2041-8213/adad5e","DOIUrl":null,"url":null,"abstract":"We use Spitzer/IRAC deep-exposure data covering two significantly larger than before sky areas to construct maps suitable for evaluating source-subtracted fluctuations in the cosmic infrared background (CIB). The maps are constructed using the self-calibration methodology eliminating artifacts to sufficient accuracy, and subset maps are selected in each area containing approximately uniform exposures. These maps are clipped and removed of known sources and then Fourier transformed to probe the CIB anisotropies to new larger scales. The power spectrum of the resultant CIB anisotropies is measured from the data to >1°, revealing the component well above that from remaining known galaxies on scales . The fluctuations are demonstrated to be free of Galactic and solar system foreground contributions out to the largest scales measured. We discuss the proposed theories for the origin of the excess CIB anisotropies in light of the new data. Out of these, the model where the CIB fluctuation excess originates from the granulation power due to LIGO-observed primordial black holes as dark matter appears most successful in accounting for all observations related to the measured CIB power amplitude and spatial structure, including the measured coherence between the CIB and unresolved cosmic X-ray background (CXB). Finally we point out the use of the data to probe the CIB-CXB cross power to new scales and higher accuracy. We also discuss the synergy of these data with future CIB programs at shorter near-IR wavelengths with deep wide surveys and subarcsecond angular resolution as provided by Euclid and Roman space missions.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adad5e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use Spitzer/IRAC deep-exposure data covering two significantly larger than before sky areas to construct maps suitable for evaluating source-subtracted fluctuations in the cosmic infrared background (CIB). The maps are constructed using the self-calibration methodology eliminating artifacts to sufficient accuracy, and subset maps are selected in each area containing approximately uniform exposures. These maps are clipped and removed of known sources and then Fourier transformed to probe the CIB anisotropies to new larger scales. The power spectrum of the resultant CIB anisotropies is measured from the data to >1°, revealing the component well above that from remaining known galaxies on scales . The fluctuations are demonstrated to be free of Galactic and solar system foreground contributions out to the largest scales measured. We discuss the proposed theories for the origin of the excess CIB anisotropies in light of the new data. Out of these, the model where the CIB fluctuation excess originates from the granulation power due to LIGO-observed primordial black holes as dark matter appears most successful in accounting for all observations related to the measured CIB power amplitude and spatial structure, including the measured coherence between the CIB and unresolved cosmic X-ray background (CXB). Finally we point out the use of the data to probe the CIB-CXB cross power to new scales and higher accuracy. We also discuss the synergy of these data with future CIB programs at shorter near-IR wavelengths with deep wide surveys and subarcsecond angular resolution as provided by Euclid and Roman space missions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信