Juan F. Sierra, Josef Světlík, Williams Savero Torres, Lorenzo Camosi, Franz Herling, Thomas Guillet, Kai Xu, Juan Sebastián Reparaz, Vera Marinova, Dimitre Dimitrov, Sergio O. Valenzuela
{"title":"Room-temperature anisotropic in-plane spin dynamics in graphene induced by PdSe2 proximity","authors":"Juan F. Sierra, Josef Světlík, Williams Savero Torres, Lorenzo Camosi, Franz Herling, Thomas Guillet, Kai Xu, Juan Sebastián Reparaz, Vera Marinova, Dimitre Dimitrov, Sergio O. Valenzuela","doi":"10.1038/s41563-024-02109-2","DOIUrl":null,"url":null,"abstract":"<p>van der Waals heterostructures provide a versatile platform for tailoring electrical, magnetic, optical and spin transport properties via proximity effects. Hexagonal transition metal dichalcogenides induce valley Zeeman spin–orbit coupling in graphene, creating spin lifetime anisotropy between in-plane and out-of-plane spin orientations. However, in-plane spin lifetimes remain isotropic due to the inherent heterostructure’s three-fold symmetry. Here we demonstrate that pentagonal PdSe<sub>2</sub>, with its unique in-plane anisotropy, induces anisotropic gate-tunable spin–orbit coupling in graphene. This enables a tenfold modulation of spin lifetimes at room temperature, depending on the in-plane spin orientation. Moreover, the directional dependence of the spin lifetimes, along the three spatial directions, reveals a persistent in-plane spin texture component that governs the spin dynamics. These findings advance our understanding of spin physics in van der Waals heterostructures and pave the way for designing topological phases in graphene-based heterostructures in the strong spin–orbit coupling regime.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"26 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02109-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
van der Waals heterostructures provide a versatile platform for tailoring electrical, magnetic, optical and spin transport properties via proximity effects. Hexagonal transition metal dichalcogenides induce valley Zeeman spin–orbit coupling in graphene, creating spin lifetime anisotropy between in-plane and out-of-plane spin orientations. However, in-plane spin lifetimes remain isotropic due to the inherent heterostructure’s three-fold symmetry. Here we demonstrate that pentagonal PdSe2, with its unique in-plane anisotropy, induces anisotropic gate-tunable spin–orbit coupling in graphene. This enables a tenfold modulation of spin lifetimes at room temperature, depending on the in-plane spin orientation. Moreover, the directional dependence of the spin lifetimes, along the three spatial directions, reveals a persistent in-plane spin texture component that governs the spin dynamics. These findings advance our understanding of spin physics in van der Waals heterostructures and pave the way for designing topological phases in graphene-based heterostructures in the strong spin–orbit coupling regime.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.