Broadband THz Modulation via Solid-State Organic Electrochemical Devices

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jonathan Scott, Atsutse Kludze, Megan Santamore, Christina J. Kousseff, Iain McCulloch, Yasaman Ghasempour, Barry P. Rand
{"title":"Broadband THz Modulation via Solid-State Organic Electrochemical Devices","authors":"Jonathan Scott, Atsutse Kludze, Megan Santamore, Christina J. Kousseff, Iain McCulloch, Yasaman Ghasempour, Barry P. Rand","doi":"10.1002/adma.202415828","DOIUrl":null,"url":null,"abstract":"The sub-Terahertz and Terahertz bands play a critical role in next-generation wireless communication and sensing technologies, thanks to the large amount of available bandwidth in this spectral regime. While long-wavelength (microwave to mm-Wave) and short-wavelength (near-infrared to ultraviolet) devices are well-established and studied, the sub-THz to THz regime remains relatively underexplored and underutilized. Traditional approaches used in the aforementioned spectral regions are more difficult to replicate in the THz band, leading to the need for the development of novel devices and structures that can manipulate THz radiation effectively. Herein a novel organic, solid-state electrochemical device is presented, capable of achieving modulation depths of over 90% from ≈500 nm of a conducting polymer that switches conductivity over a large dynamic range upon application of an electronically controllable external bias. The stability of such devices under long-term, repeated voltage switching, as well as continuous biasing at a single voltage, is also explored. Switching stabilities and long-term bias stabilities are achieved over two days for both use cases. Additionally, both depletion mode (always “ON”) and accumulation mode (always “OFF”) operation are demonstrated. These results suggest applications of organic electrochemical THz modulators in large area and flexible implementations.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"47 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415828","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sub-Terahertz and Terahertz bands play a critical role in next-generation wireless communication and sensing technologies, thanks to the large amount of available bandwidth in this spectral regime. While long-wavelength (microwave to mm-Wave) and short-wavelength (near-infrared to ultraviolet) devices are well-established and studied, the sub-THz to THz regime remains relatively underexplored and underutilized. Traditional approaches used in the aforementioned spectral regions are more difficult to replicate in the THz band, leading to the need for the development of novel devices and structures that can manipulate THz radiation effectively. Herein a novel organic, solid-state electrochemical device is presented, capable of achieving modulation depths of over 90% from ≈500 nm of a conducting polymer that switches conductivity over a large dynamic range upon application of an electronically controllable external bias. The stability of such devices under long-term, repeated voltage switching, as well as continuous biasing at a single voltage, is also explored. Switching stabilities and long-term bias stabilities are achieved over two days for both use cases. Additionally, both depletion mode (always “ON”) and accumulation mode (always “OFF”) operation are demonstrated. These results suggest applications of organic electrochemical THz modulators in large area and flexible implementations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信