High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liansheng Lan, Yonggan Wu, Yangfan Pei, Yuanhao Wei, Ting Hu, Dirk Lützenkirchen-Hecht, Kai Yuan, Yiwang Chen
{"title":"High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries","authors":"Liansheng Lan, Yonggan Wu, Yangfan Pei, Yuanhao Wei, Ting Hu, Dirk Lützenkirchen-Hecht, Kai Yuan, Yiwang Chen","doi":"10.1002/adma.202417711","DOIUrl":null,"url":null,"abstract":"Designing single-atom catalysts (SACs) with high density of accessible sites by improving metal loading and sites utilization is a promising strategy to boost the catalytic activity, but remains challenging. Herein, a high site density (SD) iron SAC (D-Fe-N/C) with 11.8 wt.% Fe-loading is reported. The in situ scanning electrochemical microscopy technique attests that the accessible active SD and site utilization of D-Fe-N/C reach as high as 1.01 × 10<sup>21</sup> site g<sup>−1</sup> and 79.8%, respectively. Therefore, D-Fe-N/C demonstrates superior oxygen reduction reaction (ORR) activity in terms of a half-wave potential of 0.918 V and turnover frequency of 0.41 e site<sup>−1</sup> s<sup>−1</sup>. The excellent ORR property of D-Fe-N/C is also demonstrated in the liquid zinc-air batteries (ZABs), which exhibit a high peak power density of 306.1 mW cm<sup>−2</sup> and an ultra-long cycling stability over 1200 h. Moreover, solid-state laminated ZABs prepared by presetting an air flow layer show a high specific capacity of 818.8 mA h g<sup>−1</sup>, an excellent cycling stability of 520 h, and a wide temperature-adaptive from −40 to 60 °C. This work not only offers possibilities by improving metal-loading and catalytic site utilization for exploring efficient SACs, but also provides strategies for device structure design toward advanced ZABs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"55 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417711","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing single-atom catalysts (SACs) with high density of accessible sites by improving metal loading and sites utilization is a promising strategy to boost the catalytic activity, but remains challenging. Herein, a high site density (SD) iron SAC (D-Fe-N/C) with 11.8 wt.% Fe-loading is reported. The in situ scanning electrochemical microscopy technique attests that the accessible active SD and site utilization of D-Fe-N/C reach as high as 1.01 × 1021 site g−1 and 79.8%, respectively. Therefore, D-Fe-N/C demonstrates superior oxygen reduction reaction (ORR) activity in terms of a half-wave potential of 0.918 V and turnover frequency of 0.41 e site−1 s−1. The excellent ORR property of D-Fe-N/C is also demonstrated in the liquid zinc-air batteries (ZABs), which exhibit a high peak power density of 306.1 mW cm−2 and an ultra-long cycling stability over 1200 h. Moreover, solid-state laminated ZABs prepared by presetting an air flow layer show a high specific capacity of 818.8 mA h g−1, an excellent cycling stability of 520 h, and a wide temperature-adaptive from −40 to 60 °C. This work not only offers possibilities by improving metal-loading and catalytic site utilization for exploring efficient SACs, but also provides strategies for device structure design toward advanced ZABs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信