A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope

IF 17.3 1区 生物学 Q1 CELL BIOLOGY
Philip J. Mannino, Andrew Perun, Ivan V. Surovtsev, Nicholas R. Ader, Lin Shao, Elisa C. Rodriguez, Thomas J. Melia, Megan C. King, C. Patrick Lusk
{"title":"A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope","authors":"Philip J. Mannino, Andrew Perun, Ivan V. Surovtsev, Nicholas R. Ader, Lin Shao, Elisa C. Rodriguez, Thomas J. Melia, Megan C. King, C. Patrick Lusk","doi":"10.1038/s41556-025-01612-1","DOIUrl":null,"url":null,"abstract":"Autophagic mechanisms that maintain nuclear envelope homoeostasis are bulwarks to ageing and disease. Here we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast by leveraging four-dimensional lattice light sheet microscopy and correlative light and electron tomography. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 s with Atg39-cargo delivery to the vacuole. Although there are several routes to the vacuole, at least one pathway incorporates two consecutive membrane fission steps: inner nuclear membrane (INM) fission to generate an INM-derived vesicle in the perinuclear space and outer nuclear membrane fission to liberate a double-membraned vesicle to the cytosol. Outer nuclear membrane fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein 1 (Dnm1), which is recruited to sites of Atg39 accumulation by Atg11. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodelling. Mannino et al. provide a quantitative and ultrastructural timeline of nucleophagy in yeast with lattice light sheet microscopy and correlative light and electron tomography. They identify a role for dynamin-like protein 1 in outer nuclear membrane fission.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 3","pages":"464-476"},"PeriodicalIF":17.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-025-01612-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagic mechanisms that maintain nuclear envelope homoeostasis are bulwarks to ageing and disease. Here we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast by leveraging four-dimensional lattice light sheet microscopy and correlative light and electron tomography. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 s with Atg39-cargo delivery to the vacuole. Although there are several routes to the vacuole, at least one pathway incorporates two consecutive membrane fission steps: inner nuclear membrane (INM) fission to generate an INM-derived vesicle in the perinuclear space and outer nuclear membrane fission to liberate a double-membraned vesicle to the cytosol. Outer nuclear membrane fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein 1 (Dnm1), which is recruited to sites of Atg39 accumulation by Atg11. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodelling. Mannino et al. provide a quantitative and ultrastructural timeline of nucleophagy in yeast with lattice light sheet microscopy and correlative light and electron tomography. They identify a role for dynamin-like protein 1 in outer nuclear membrane fission.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信