ROS-induced cytosolic release of mitochondrial PGAM5 promotes colorectal cancer progression by interacting with MST3

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shiyang Wang, Xi Wu, Wenxin Bi, Jiuzhi Xu, Liyuan Hou, Guilin Li, Yuwei Pan, Hanfu Zhang, Mengzhen Li, Sujuan Du, Mingxin Zhang, Di Liu, Shuiling Jin, Xiaojing Shi, Yuhua Tian, Jianwei Shuai, Maksim V. Plikus, Moshi Song, Zhaocai Zhou, Lu Yu, Cong Lv, Zhengquan Yu
{"title":"ROS-induced cytosolic release of mitochondrial PGAM5 promotes colorectal cancer progression by interacting with MST3","authors":"Shiyang Wang, Xi Wu, Wenxin Bi, Jiuzhi Xu, Liyuan Hou, Guilin Li, Yuwei Pan, Hanfu Zhang, Mengzhen Li, Sujuan Du, Mingxin Zhang, Di Liu, Shuiling Jin, Xiaojing Shi, Yuhua Tian, Jianwei Shuai, Maksim V. Plikus, Moshi Song, Zhaocai Zhou, Lu Yu, Cong Lv, Zhengquan Yu","doi":"10.1038/s41467-025-56444-2","DOIUrl":null,"url":null,"abstract":"<p>Aberrant release of mitochondrial reactive oxygen species (mtROS) in response to cellular stress is well known for promoting cancer progression. However, precise molecular mechanism by which mtROS contribute to epithelial cancer progression remains only partially understood. Here, using colorectal cancer (CRC) models, we show that upon sensing excessive mtROS, phosphatase PGAM5, which normally localizes to the mitochondria, undergoes aberrant cleavage by presenilin-associated rhomboid-like protein (PARL), becoming released into the cytoplasm. Cytosolic PGAM5 then directly binds to and dephosphorylates MST3 kinase. This, in turn, prevents STK25-mediated LATS1/2 phosphorylation, leading to YAP activation and CRC progression. Importantly, depletion of <i>MST3</i> reciprocally promotes accumulation of cytosolic PGAM5 by inducing mitochondrial damage. Taken together, these findings demonstrate how mtROS promotes CRC progression by activating YAP via a post-transcriptional positive feedback loop between PGAM5 and MST3, both of which can serve as potential targets for developing next-generation anti-colon cancer therapeutics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"40 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56444-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant release of mitochondrial reactive oxygen species (mtROS) in response to cellular stress is well known for promoting cancer progression. However, precise molecular mechanism by which mtROS contribute to epithelial cancer progression remains only partially understood. Here, using colorectal cancer (CRC) models, we show that upon sensing excessive mtROS, phosphatase PGAM5, which normally localizes to the mitochondria, undergoes aberrant cleavage by presenilin-associated rhomboid-like protein (PARL), becoming released into the cytoplasm. Cytosolic PGAM5 then directly binds to and dephosphorylates MST3 kinase. This, in turn, prevents STK25-mediated LATS1/2 phosphorylation, leading to YAP activation and CRC progression. Importantly, depletion of MST3 reciprocally promotes accumulation of cytosolic PGAM5 by inducing mitochondrial damage. Taken together, these findings demonstrate how mtROS promotes CRC progression by activating YAP via a post-transcriptional positive feedback loop between PGAM5 and MST3, both of which can serve as potential targets for developing next-generation anti-colon cancer therapeutics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信