Bayesian Optimization of insect trap distribution for pest monitoring efficiency in agroecosystems.

IF 2.4 Q1 ENTOMOLOGY
Frontiers in insect science Pub Date : 2025-01-22 eCollection Date: 2024-01-01 DOI:10.3389/finsc.2024.1509942
Eric Yanchenko, Thomas M Chappell, Anders S Huseth
{"title":"Bayesian Optimization of insect trap distribution for pest monitoring efficiency in agroecosystems.","authors":"Eric Yanchenko, Thomas M Chappell, Anders S Huseth","doi":"10.3389/finsc.2024.1509942","DOIUrl":null,"url":null,"abstract":"<p><p>Insect trap networks targeting agricultural pests are commonplace but seldom optimized to improve precision or efficiency. Trap site selection is often driven by user convenience or predetermined trap densities relative to sensitive host crop abundance in the landscape. Monitoring for invasive pests often requires expedient decisions based on dispersal potential and ecology to inform trap placement. Optimization of trap networks using contemporary analytical approaches can help users determine the distribution of traps as information accumulates and priorities change. In this study, a Bayesian optimization (BO) algorithm was used to learn more about the optimal distribution of a fine-scale trap network targeting <i>Helicoverpa zea</i> (Boddie), a significant agricultural pest across North America. Four years of pheromone trap monitoring was conducted at the same 21 locations distributed across ~7,000 square kilometers in a five-county area in North Carolina, USA. Three years of data were used to train a BO model with a fourth year designated for testing. For any quantity of trap locations, the approach identified those that provide the most information, allowing optimization of trapping efficiency given either a constraint on the number of locations, or a set precision required for pest density estimation. Results suggest that BO is a powerful approach to enable optimized trap placement decisions by practitioners given finite resources and time.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1509942"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in insect science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/finsc.2024.1509942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect trap networks targeting agricultural pests are commonplace but seldom optimized to improve precision or efficiency. Trap site selection is often driven by user convenience or predetermined trap densities relative to sensitive host crop abundance in the landscape. Monitoring for invasive pests often requires expedient decisions based on dispersal potential and ecology to inform trap placement. Optimization of trap networks using contemporary analytical approaches can help users determine the distribution of traps as information accumulates and priorities change. In this study, a Bayesian optimization (BO) algorithm was used to learn more about the optimal distribution of a fine-scale trap network targeting Helicoverpa zea (Boddie), a significant agricultural pest across North America. Four years of pheromone trap monitoring was conducted at the same 21 locations distributed across ~7,000 square kilometers in a five-county area in North Carolina, USA. Three years of data were used to train a BO model with a fourth year designated for testing. For any quantity of trap locations, the approach identified those that provide the most information, allowing optimization of trapping efficiency given either a constraint on the number of locations, or a set precision required for pest density estimation. Results suggest that BO is a powerful approach to enable optimized trap placement decisions by practitioners given finite resources and time.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信