Laura Perego, Caterina Dallari, Chiara Falciani, Alessandro Pini, Lucia Gardini, Caterina Credi, Francesco Saverio Pavone
{"title":"A Compact Prism-Based Microscope for Highly Sensitive Measurements in Fluid Biopsy","authors":"Laura Perego, Caterina Dallari, Chiara Falciani, Alessandro Pini, Lucia Gardini, Caterina Credi, Francesco Saverio Pavone","doi":"10.1002/jbio.202400519","DOIUrl":null,"url":null,"abstract":"<p>The increasing demand for sensitive, portable, and affordable disease detection methods has spurred the development of advanced biosensors for rapid early-stage diagnosis, population mass screening, and bed-monitoring. Current high-sensitivity devices face hurdles such as high production costs and challenges in multiplexed signal detection. To address these, we developed a prism-based total internal reflection system which, in combination with surface functionalization techniques of gold nanoparticles, enables evanescent wave scattering for highly sensitive and rapid detection of specific analytes in both synthetic and human liquid samples. To validate its efficacy, we conducted scattering experiments in synthetic and human serum samples, exploiting functionalized AuNPs to recognize bacterial lipopolysaccharides as biomarkers for sepsis disease. We demonstrate a remarkable sensitivity in the femtogram per mL concentration range for this specific pathological biomarker. Based on this result we envisage the potential adoption of our technique for liquid biopsy in the clinical scenario.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400519","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for sensitive, portable, and affordable disease detection methods has spurred the development of advanced biosensors for rapid early-stage diagnosis, population mass screening, and bed-monitoring. Current high-sensitivity devices face hurdles such as high production costs and challenges in multiplexed signal detection. To address these, we developed a prism-based total internal reflection system which, in combination with surface functionalization techniques of gold nanoparticles, enables evanescent wave scattering for highly sensitive and rapid detection of specific analytes in both synthetic and human liquid samples. To validate its efficacy, we conducted scattering experiments in synthetic and human serum samples, exploiting functionalized AuNPs to recognize bacterial lipopolysaccharides as biomarkers for sepsis disease. We demonstrate a remarkable sensitivity in the femtogram per mL concentration range for this specific pathological biomarker. Based on this result we envisage the potential adoption of our technique for liquid biopsy in the clinical scenario.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.