A Compact Prism-Based Microscope for Highly Sensitive Measurements in Fluid Biopsy.

Laura Perego, Caterina Dallari, Chiara Falciani, Alessandro Pini, Lucia Gardini, Caterina Credi, Francesco Saverio Pavone
{"title":"A Compact Prism-Based Microscope for Highly Sensitive Measurements in Fluid Biopsy.","authors":"Laura Perego, Caterina Dallari, Chiara Falciani, Alessandro Pini, Lucia Gardini, Caterina Credi, Francesco Saverio Pavone","doi":"10.1002/jbio.202400519","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for sensitive, portable, and affordable disease detection methods has spurred the development of advanced biosensors for rapid early-stage diagnosis, population mass screening, and bed-monitoring. Current high-sensitivity devices face hurdles such as high production costs and challenges in multiplexed signal detection. To address these, we developed a prism-based total internal reflection system which, in combination with surface functionalization techniques of gold nanoparticles, enables evanescent wave scattering for highly sensitive and rapid detection of specific analytes in both synthetic and human liquid samples. To validate its efficacy, we conducted scattering experiments in synthetic and human serum samples, exploiting functionalized AuNPs to recognize bacterial lipopolysaccharides as biomarkers for sepsis disease. We demonstrate a remarkable sensitivity in the femtogram per mL concentration range for this specific pathological biomarker. Based on this result we envisage the potential adoption of our technique for liquid biopsy in the clinical scenario.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400519"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for sensitive, portable, and affordable disease detection methods has spurred the development of advanced biosensors for rapid early-stage diagnosis, population mass screening, and bed-monitoring. Current high-sensitivity devices face hurdles such as high production costs and challenges in multiplexed signal detection. To address these, we developed a prism-based total internal reflection system which, in combination with surface functionalization techniques of gold nanoparticles, enables evanescent wave scattering for highly sensitive and rapid detection of specific analytes in both synthetic and human liquid samples. To validate its efficacy, we conducted scattering experiments in synthetic and human serum samples, exploiting functionalized AuNPs to recognize bacterial lipopolysaccharides as biomarkers for sepsis disease. We demonstrate a remarkable sensitivity in the femtogram per mL concentration range for this specific pathological biomarker. Based on this result we envisage the potential adoption of our technique for liquid biopsy in the clinical scenario.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信