Prediction of individual patient outcomes to psychotherapy vs medication for major depression.

Devon LoParo, Boadie W Dunlop, Charles B Nemeroff, Helen S Mayberg, W Edward Craighead
{"title":"Prediction of individual patient outcomes to psychotherapy vs medication for major depression.","authors":"Devon LoParo, Boadie W Dunlop, Charles B Nemeroff, Helen S Mayberg, W Edward Craighead","doi":"10.1038/s44184-025-00119-9","DOIUrl":null,"url":null,"abstract":"<p><p>Treatments for major depressive disorder (MDD) include antidepressant medications and evidence-based psychotherapies, which are approximately equally efficacious. Individual response to treatment, however, is variable, implying individual differences that could allow for prospective differential prediction of treatment response and personalized treatment recommendation. We used machine learning to develop predictor variables that combined demographic and clinical items from a randomized clinical trial. The variables predicted a meaningful proportion of variance in end-of-treatment depression severity for cognitive behavioral therapy (39.7%), escitalopram (32.1%), and duloxetine (67.7%), leading to a high accuracy in predicting remission (71%). Further, we used these variables to simulate treatment recommendation and found that patients who received their recommended treatment had significantly improved depression severity and remission likelihood. Finally, the prediction algorithms and treatment recommendation tool were externally validated in an independent sample. These results represent a highly promising, easily implemented, potential advance for personalized medicine in MDD treatment.</p>","PeriodicalId":74321,"journal":{"name":"Npj mental health research","volume":"4 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj mental health research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44184-025-00119-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Treatments for major depressive disorder (MDD) include antidepressant medications and evidence-based psychotherapies, which are approximately equally efficacious. Individual response to treatment, however, is variable, implying individual differences that could allow for prospective differential prediction of treatment response and personalized treatment recommendation. We used machine learning to develop predictor variables that combined demographic and clinical items from a randomized clinical trial. The variables predicted a meaningful proportion of variance in end-of-treatment depression severity for cognitive behavioral therapy (39.7%), escitalopram (32.1%), and duloxetine (67.7%), leading to a high accuracy in predicting remission (71%). Further, we used these variables to simulate treatment recommendation and found that patients who received their recommended treatment had significantly improved depression severity and remission likelihood. Finally, the prediction algorithms and treatment recommendation tool were externally validated in an independent sample. These results represent a highly promising, easily implemented, potential advance for personalized medicine in MDD treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信