{"title":"Mapping glioma's impact on cognition: Insights from macrostructure, microstructure, and beyond.","authors":"Nuria Cayuela, Cristina Izquierdo, Lucía Vaquero, Estela Càmara, Jordi Bruna, Marta Simó","doi":"10.1093/noajnl/vdaf003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cognitive impairment (CI) significantly impacts the quality of life of glioma patients. The main contributing risk factors include tumor characteristics, treatment-related factors, and their complex interplay. This review explores the role of advanced structural neuroimaging techniques in understanding CI in glioma patients.</p><p><strong>Methods: </strong>A literature search was conducted in PubMed, PsycINFO, and ISI Web of Knowledge using specific keywords. We included studies with advanced magnetic resonance imaging techniques and objective neuropsychological exams.</p><p><strong>Results: </strong>At diagnosis, during the pre-surgery phase, associations between glioma characteristics and cognitive outcomes have been described. Specifically, patients with isocitrate dehydrogenase (IDH)-wild-type gliomas exhibit more adverse cognitive outcomes, accompanied by disruptions in gray (GM) and white matter (WM) networks when compared to IDH-mutant. In addition, pre- and post-surgery imaging analyses highlight the importance of preserving specific WM tracts, such as the inferior longitudinal and arcuate fasciculus, in mitigating verbal memory and language processing decline. Furthermore, examining gliomas in perisylvian regions emphasizes deleterious effects on various cognitive domains. Additionally, it has been suggested that neuroplastic reorganization could serve as a compensatory mechanism against CI. Lastly, a limited number of studies suggest long-term CI linked to GM atrophy and leukoencephalopathy induced by radiotherapy ± chemotherapy in glioma survivors, highlighting the need for improving treatment approaches, particularly for patients with extended survival expectations.</p><p><strong>Conclusion: </strong>This review underscores the need for nuanced understanding and an individual approach in the management of glioma patients. Neuroplastic insights offer clinicians valuable guidance in surgical decision-making and personalized therapeutic approaches thus improving patient outcomes in neuro-oncology.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"7 1","pages":"vdaf003"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cognitive impairment (CI) significantly impacts the quality of life of glioma patients. The main contributing risk factors include tumor characteristics, treatment-related factors, and their complex interplay. This review explores the role of advanced structural neuroimaging techniques in understanding CI in glioma patients.
Methods: A literature search was conducted in PubMed, PsycINFO, and ISI Web of Knowledge using specific keywords. We included studies with advanced magnetic resonance imaging techniques and objective neuropsychological exams.
Results: At diagnosis, during the pre-surgery phase, associations between glioma characteristics and cognitive outcomes have been described. Specifically, patients with isocitrate dehydrogenase (IDH)-wild-type gliomas exhibit more adverse cognitive outcomes, accompanied by disruptions in gray (GM) and white matter (WM) networks when compared to IDH-mutant. In addition, pre- and post-surgery imaging analyses highlight the importance of preserving specific WM tracts, such as the inferior longitudinal and arcuate fasciculus, in mitigating verbal memory and language processing decline. Furthermore, examining gliomas in perisylvian regions emphasizes deleterious effects on various cognitive domains. Additionally, it has been suggested that neuroplastic reorganization could serve as a compensatory mechanism against CI. Lastly, a limited number of studies suggest long-term CI linked to GM atrophy and leukoencephalopathy induced by radiotherapy ± chemotherapy in glioma survivors, highlighting the need for improving treatment approaches, particularly for patients with extended survival expectations.
Conclusion: This review underscores the need for nuanced understanding and an individual approach in the management of glioma patients. Neuroplastic insights offer clinicians valuable guidance in surgical decision-making and personalized therapeutic approaches thus improving patient outcomes in neuro-oncology.