Multimodal Adaptations to Expiratory Musculature-Targeted Resistance Training: A Preliminary Study in Healthy Young Adults.

IF 2.2 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Rahul Krishnamurthy, Douglas H Schultz, Yingying Wang, Sathish Kumar Natarajan, Steven M Barlow, Angela M Dietsch
{"title":"Multimodal Adaptations to Expiratory Musculature-Targeted Resistance Training: A Preliminary Study in Healthy Young Adults.","authors":"Rahul Krishnamurthy, Douglas H Schultz, Yingying Wang, Sathish Kumar Natarajan, Steven M Barlow, Angela M Dietsch","doi":"10.1044/2024_JSLHR-24-00294","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Exercise-induced adaptations, including neuroplasticity, are well studied for physical exercise that targets skeletal muscles. However, little is known about the neuroplastic potential of targeted speech and swallowing exercises. The current study aimed to gather preliminary data on molecular and functional changes associated with the neuroplastic effects of 4-week expiratory musculature-targeted resistance training in healthy young adults.</p><p><strong>Method: </strong>Five healthy young adult men aged between 19 and 35 years, <i>M</i> (<i>SD</i>) = 28.8 (2.68) years, underwent 4 weeks of expiratory muscle strength training (EMST). We measured changes in maximum expiratory pressure (MEP), serum brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1) levels at baseline and posttraining conditions. Furthermore, functional and structural magnetic resonance images were obtained to investigate the neuroplastic effects of EMST. We analyzed the effects of training using a linear mixed model for each outcome, with fixed effects for baseline and posttraining.</p><p><strong>Results: </strong>MEP and serum BDNF levels significantly increased posttraining. However, this effect was not observed for IGF-1. A significant increase in functional activation in eight regions was also observed posttraining. However, we did not observe significant changes in the white matter microstructure.</p><p><strong>Conclusions: </strong>Preliminary data from our study suggest targeted resistance training of expiratory muscles results in molecular and neuroplastic adaptations similar to exercise that targets skeletal muscles. Additionally, these results suggest that EMST could be a potential intervention to modulate (or prime) neurotrophic signaling pathways linked to functional strength gains and neuroplasticity.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":" ","pages":"987-1005"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2024_JSLHR-24-00294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Exercise-induced adaptations, including neuroplasticity, are well studied for physical exercise that targets skeletal muscles. However, little is known about the neuroplastic potential of targeted speech and swallowing exercises. The current study aimed to gather preliminary data on molecular and functional changes associated with the neuroplastic effects of 4-week expiratory musculature-targeted resistance training in healthy young adults.

Method: Five healthy young adult men aged between 19 and 35 years, M (SD) = 28.8 (2.68) years, underwent 4 weeks of expiratory muscle strength training (EMST). We measured changes in maximum expiratory pressure (MEP), serum brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1) levels at baseline and posttraining conditions. Furthermore, functional and structural magnetic resonance images were obtained to investigate the neuroplastic effects of EMST. We analyzed the effects of training using a linear mixed model for each outcome, with fixed effects for baseline and posttraining.

Results: MEP and serum BDNF levels significantly increased posttraining. However, this effect was not observed for IGF-1. A significant increase in functional activation in eight regions was also observed posttraining. However, we did not observe significant changes in the white matter microstructure.

Conclusions: Preliminary data from our study suggest targeted resistance training of expiratory muscles results in molecular and neuroplastic adaptations similar to exercise that targets skeletal muscles. Additionally, these results suggest that EMST could be a potential intervention to modulate (or prime) neurotrophic signaling pathways linked to functional strength gains and neuroplasticity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Speech Language and Hearing Research
Journal of Speech Language and Hearing Research AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-REHABILITATION
CiteScore
4.10
自引率
19.20%
发文量
538
审稿时长
4-8 weeks
期刊介绍: Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work. Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信