Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli.

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Pallabi Kundu, Mariela Oviedo-Diego, Franco Cargnelutti, R Ryan Jones, Erika Garcia, Eileen A Hebets, Douglas D Gaffin
{"title":"Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli.","authors":"Pallabi Kundu, Mariela Oviedo-Diego, Franco Cargnelutti, R Ryan Jones, Erika Garcia, Eileen A Hebets, Douglas D Gaffin","doi":"10.1007/s00359-025-01731-y","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01731-y","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信