{"title":"Feedback-delay dependence of the stability of cluster periodic orbits in populations of degrade-and-fire oscillators with common activator.","authors":"Bastien Fernandez, Matteo Tanzi","doi":"10.1007/s00285-024-02169-7","DOIUrl":null,"url":null,"abstract":"<p><p>Feedback delay has been identified as a key ingredient in the quorum sensing synchronization of synthetic gene oscillators. While this influence has been evidenced at the theoretical level in a simplified system of degrade-and-fire oscillators coupled via a common activator protein, full mathematical certifications remained to be provided. Here, we prove from a rigorous mathematical viewpoint that, for the very same model, the synchronized degrade-and-fire oscillations are 1/ unstable with respect to out-of-sync perturbations in absence of delay, and 2/ are otherwise asymptotically stable in presence of delay, no matter how small is its amplitude. To that goal, we proceed to an extensive study of the population dynamics in this system, which in particular identifies the mechanisms of, and related criteria for, the delay-dependent stability of periodic orbits with respect to out-of-sync perturbations. As an additional outcome, the analysis also reveals that, depending on the parameters, multiple stable partially synchronized periodic orbits can coexist with the fully synchronized one.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 3","pages":"27"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02169-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feedback delay has been identified as a key ingredient in the quorum sensing synchronization of synthetic gene oscillators. While this influence has been evidenced at the theoretical level in a simplified system of degrade-and-fire oscillators coupled via a common activator protein, full mathematical certifications remained to be provided. Here, we prove from a rigorous mathematical viewpoint that, for the very same model, the synchronized degrade-and-fire oscillations are 1/ unstable with respect to out-of-sync perturbations in absence of delay, and 2/ are otherwise asymptotically stable in presence of delay, no matter how small is its amplitude. To that goal, we proceed to an extensive study of the population dynamics in this system, which in particular identifies the mechanisms of, and related criteria for, the delay-dependent stability of periodic orbits with respect to out-of-sync perturbations. As an additional outcome, the analysis also reveals that, depending on the parameters, multiple stable partially synchronized periodic orbits can coexist with the fully synchronized one.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.