Enhancing deep learning methods for brain metastasis detection through cross-technique annotations on SPACE MRI.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Tassilo Wald, Benjamin Hamm, Julius C Holzschuh, Rami El Shafie, Andreas Kudak, Balint Kovacs, Irada Pflüger, Bastian von Nettelbladt, Constantin Ulrich, Michael Anton Baumgartner, Philipp Vollmuth, Jürgen Debus, Klaus H Maier-Hein, Thomas Welzel
{"title":"Enhancing deep learning methods for brain metastasis detection through cross-technique annotations on SPACE MRI.","authors":"Tassilo Wald, Benjamin Hamm, Julius C Holzschuh, Rami El Shafie, Andreas Kudak, Balint Kovacs, Irada Pflüger, Bastian von Nettelbladt, Constantin Ulrich, Michael Anton Baumgartner, Philipp Vollmuth, Jürgen Debus, Klaus H Maier-Hein, Thomas Welzel","doi":"10.1186/s41747-025-00554-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gadolinium-enhanced \"sampling perfection with application-optimized contrasts using different flip angle evolution\" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to \"magnetization-prepared rapid acquisition gradient echo\" (MPRAGE). We hypothesize that this better conspicuity leads to high-quality annotation (HAQ), enhancing deep learning (DL) algorithm detection of BMs on MPRAGE images.</p><p><strong>Methods: </strong>Retrospective contrast-enhanced (gadobutrol 0.1 mmol/kg) SPACE and MPRAGE data of 157 patients with BM were used, either annotated on MPRAGE resulting in normal annotation quality (NAQ) or on coregistered SPACE resulting in HAQ. Multiple DL methods were developed with NAQ or HAQ using either SPACE or MRPAGE images and evaluated on their detection performance using positive predictive value (PPV), sensitivity, and F1 score and on their delineation performance using volumetric Dice similarity coefficient, PPV, and sensitivity on one internal and four additional test datasets (660 patients).</p><p><strong>Results: </strong>The SPACE-HAQ model reached 0.978 PPV, 0.882 sensitivity, and 0.916 F1-score. The MPRAGE-HAQ reached 0.867, 0.839, and 0.840, the MPRAGE NAQ 0.964, 0.667, and 0.798, respectively (p ≥ 0.157). Relative to MPRAGE-NAQ, the MPRAGE-HAQ F1-score detection increased on all additional test datasets by 2.5-9.6 points (p < 0.016) and sensitivity improved on three datasets by 4.6-8.5 points (p < 0.001). Moreover, volumetric instance sensitivity improved by 3.6-7.6 points (p < 0.001).</p><p><strong>Conclusion: </strong>HAQ improves DL methods without specialized imaging during application time. HAQ alone achieves about 40% of the performance improvements seen with SPACE images as input, allowing for fast and accurate, fully automated detection of small (< 1 cm) BMs.</p><p><strong>Relevance statement: </strong>Training with higher-quality annotations, created using the SPACE sequence, improves the detection and delineation sensitivity of DL methods for the detection of brain metastases (BMs)on MPRAGE images. This MRI cross-technique transfer learning is a promising way to increase diagnostic performance.</p><p><strong>Key points: </strong>Delineating small BMs on SPACE MRI sequence results in higher quality annotations than on MPRAGE sequence due to enhanced conspicuity. Leveraging cross-technique ground truth annotations during training improved the accuracy of DL models in detecting and segmenting BMs. Cross-technique annotation may enhance DL models by integrating benefits from specialized, time-intensive MRI sequences while not relying on them. Further validation in prospective studies is needed.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"15"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00554-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gadolinium-enhanced "sampling perfection with application-optimized contrasts using different flip angle evolution" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to "magnetization-prepared rapid acquisition gradient echo" (MPRAGE). We hypothesize that this better conspicuity leads to high-quality annotation (HAQ), enhancing deep learning (DL) algorithm detection of BMs on MPRAGE images.

Methods: Retrospective contrast-enhanced (gadobutrol 0.1 mmol/kg) SPACE and MPRAGE data of 157 patients with BM were used, either annotated on MPRAGE resulting in normal annotation quality (NAQ) or on coregistered SPACE resulting in HAQ. Multiple DL methods were developed with NAQ or HAQ using either SPACE or MRPAGE images and evaluated on their detection performance using positive predictive value (PPV), sensitivity, and F1 score and on their delineation performance using volumetric Dice similarity coefficient, PPV, and sensitivity on one internal and four additional test datasets (660 patients).

Results: The SPACE-HAQ model reached 0.978 PPV, 0.882 sensitivity, and 0.916 F1-score. The MPRAGE-HAQ reached 0.867, 0.839, and 0.840, the MPRAGE NAQ 0.964, 0.667, and 0.798, respectively (p ≥ 0.157). Relative to MPRAGE-NAQ, the MPRAGE-HAQ F1-score detection increased on all additional test datasets by 2.5-9.6 points (p < 0.016) and sensitivity improved on three datasets by 4.6-8.5 points (p < 0.001). Moreover, volumetric instance sensitivity improved by 3.6-7.6 points (p < 0.001).

Conclusion: HAQ improves DL methods without specialized imaging during application time. HAQ alone achieves about 40% of the performance improvements seen with SPACE images as input, allowing for fast and accurate, fully automated detection of small (< 1 cm) BMs.

Relevance statement: Training with higher-quality annotations, created using the SPACE sequence, improves the detection and delineation sensitivity of DL methods for the detection of brain metastases (BMs)on MPRAGE images. This MRI cross-technique transfer learning is a promising way to increase diagnostic performance.

Key points: Delineating small BMs on SPACE MRI sequence results in higher quality annotations than on MPRAGE sequence due to enhanced conspicuity. Leveraging cross-technique ground truth annotations during training improved the accuracy of DL models in detecting and segmenting BMs. Cross-technique annotation may enhance DL models by integrating benefits from specialized, time-intensive MRI sequences while not relying on them. Further validation in prospective studies is needed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信