Kenta Yoshida, Neha Anegondi, Adam Pely, Miao Zhang, Frederic Debraine, Karthik Ramesh, Verena Steffen, Simon S Gao, Catherine Cukras, Christina Rabe, Daniela Ferrara, Richard F Spaide, SriniVas R Sadda, Frank G Holz, Qi Yang
{"title":"Deep Learning Approaches to Predict Geographic Atrophy Progression Using Three-Dimensional OCT Imaging.","authors":"Kenta Yoshida, Neha Anegondi, Adam Pely, Miao Zhang, Frederic Debraine, Karthik Ramesh, Verena Steffen, Simon S Gao, Catherine Cukras, Christina Rabe, Daniela Ferrara, Richard F Spaide, SriniVas R Sadda, Frank G Holz, Qi Yang","doi":"10.1167/tvst.14.2.11","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the performance of various approaches of processing three-dimensional (3D) optical coherence tomography (OCT) images for deep learning models in predicting area and future growth rate of geographic atrophy (GA) lesions caused by age-related macular degeneration (AMD).</p><p><strong>Methods: </strong>The study used OCT volumes of GA patients/eyes from the lampalizumab clinical trials (NCT02247479, NCT02247531, NCT02479386); 1219 and 442 study eyes for model development and holdout performance evaluation, respectively. Four approaches were evaluated: (1) en-face intensity maps; (2) SLIVER-net; (3) a 3D convolutional neural network (CNN); and (4) en-face layer thickness and between-layer intensity maps from a segmentation model. The processed OCT images and maps served as input for CNN models to predict baseline GA lesion area size and annualized growth rate.</p><p><strong>Results: </strong>For the holdout dataset, the Pearson correlation coefficient squared (r2) in the GA growth rate prediction was comparable for all the evaluated approaches (0.33∼0.35). In baseline lesion size prediction, prediction performance was comparable (0.9∼0.91) except for the SLIVER-net (0.83). Prediction performance with only the thickness map of the ellipsoid zone (EZ) or retinal pigment epithelium (RPE) layer individually was inferior to using both. Addition of other layer thickness or intensity maps did not improve the prediction performance.</p><p><strong>Conclusions: </strong>All explored approaches had comparable performance, which might have reached a plateau to predict GA growth rate. EZ and RPE layers appear to contain the majority of information related to the prediction.</p><p><strong>Translational relevance: </strong>Our study provides important insights on the utility of 3D OCT images for GA disease progression predictions.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 2","pages":"11"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.2.11","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the performance of various approaches of processing three-dimensional (3D) optical coherence tomography (OCT) images for deep learning models in predicting area and future growth rate of geographic atrophy (GA) lesions caused by age-related macular degeneration (AMD).
Methods: The study used OCT volumes of GA patients/eyes from the lampalizumab clinical trials (NCT02247479, NCT02247531, NCT02479386); 1219 and 442 study eyes for model development and holdout performance evaluation, respectively. Four approaches were evaluated: (1) en-face intensity maps; (2) SLIVER-net; (3) a 3D convolutional neural network (CNN); and (4) en-face layer thickness and between-layer intensity maps from a segmentation model. The processed OCT images and maps served as input for CNN models to predict baseline GA lesion area size and annualized growth rate.
Results: For the holdout dataset, the Pearson correlation coefficient squared (r2) in the GA growth rate prediction was comparable for all the evaluated approaches (0.33∼0.35). In baseline lesion size prediction, prediction performance was comparable (0.9∼0.91) except for the SLIVER-net (0.83). Prediction performance with only the thickness map of the ellipsoid zone (EZ) or retinal pigment epithelium (RPE) layer individually was inferior to using both. Addition of other layer thickness or intensity maps did not improve the prediction performance.
Conclusions: All explored approaches had comparable performance, which might have reached a plateau to predict GA growth rate. EZ and RPE layers appear to contain the majority of information related to the prediction.
Translational relevance: Our study provides important insights on the utility of 3D OCT images for GA disease progression predictions.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.