Yoon-Ju Na, Kyoung Jin Choi, Won Hoon Jung, Sung Bum Park, Byumseok Koh, Kwang-Lae Hoe, Ki Young Kim
{"title":"Development of 3D Muscle Cell Culture-Based Screening System for Metabolic Syndrome Drug Research.","authors":"Yoon-Ju Na, Kyoung Jin Choi, Won Hoon Jung, Sung Bum Park, Byumseok Koh, Kwang-Lae Hoe, Ki Young Kim","doi":"10.1089/ten.tec.2024.0292","DOIUrl":null,"url":null,"abstract":"<p><p>Developing effective drug screening methods for type 2 diabetes requires physiologically relevant models. Traditional 2D cell cultures have limitations in replicating <i>in vivo</i> conditions, leading to challenges in assessing drug efficacy. To overcome these issues, we developed a 3D artificial muscle model that induces insulin resistance, a hallmark of type 2 diabetes. Using C2C12 myoblasts cultured in a scaffold of 1% alginate and 1 mg/mL collagen type 1, we optimized conditions for differentiation and structural stability. Insulin resistance was induced using palmitic acid (PA), and glucose uptake was assessed using the fluorescent glucose analog 2-NBDG. The 3D model demonstrated superior glucose uptake responses compared with 2D cultures, with a threefold increase in insulin-stimulated glucose uptake on days 4 and 8 of differentiation. Induced insulin resistance was observed with 0.1 mM PA, which maintained cell viability and differentiation capacity. The model was validated through comparative drug screening using rosiglitazone and metformin, as well as 165 candidate compounds provided by Korea Chemical Bank. Drug screening revealed that three out of five hit compounds identified in both 2D and 3D models exhibited greater efficacy in 3D cultures, with results consistent with <i>ex vivo</i> assays using mouse soleus muscle. This model closely mimics <i>in vivo</i> conditions, offering a robust platform for type 2 diabetes drug discovery while supporting ethical research practices.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"53-64"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2024.0292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Developing effective drug screening methods for type 2 diabetes requires physiologically relevant models. Traditional 2D cell cultures have limitations in replicating in vivo conditions, leading to challenges in assessing drug efficacy. To overcome these issues, we developed a 3D artificial muscle model that induces insulin resistance, a hallmark of type 2 diabetes. Using C2C12 myoblasts cultured in a scaffold of 1% alginate and 1 mg/mL collagen type 1, we optimized conditions for differentiation and structural stability. Insulin resistance was induced using palmitic acid (PA), and glucose uptake was assessed using the fluorescent glucose analog 2-NBDG. The 3D model demonstrated superior glucose uptake responses compared with 2D cultures, with a threefold increase in insulin-stimulated glucose uptake on days 4 and 8 of differentiation. Induced insulin resistance was observed with 0.1 mM PA, which maintained cell viability and differentiation capacity. The model was validated through comparative drug screening using rosiglitazone and metformin, as well as 165 candidate compounds provided by Korea Chemical Bank. Drug screening revealed that three out of five hit compounds identified in both 2D and 3D models exhibited greater efficacy in 3D cultures, with results consistent with ex vivo assays using mouse soleus muscle. This model closely mimics in vivo conditions, offering a robust platform for type 2 diabetes drug discovery while supporting ethical research practices.
开发有效的2型糖尿病药物筛选方法需要生理学相关模型。传统的二维细胞培养在体内条件下复制有局限性,导致评估药物疗效的挑战。为了克服这些问题,我们开发了一种3D人工肌肉模型,可以诱导胰岛素抵抗,这是2型糖尿病的标志。将C2C12成肌细胞培养在1%海藻酸盐和1mg /mL 1型胶原的支架中,优化分化条件和结构稳定性。用棕榈酸(PA)诱导胰岛素抵抗,用荧光葡萄糖类似物2-NBDG评估葡萄糖摄取。与2D培养相比,3D模型显示出更好的葡萄糖摄取反应,在分化的第4天和第8天,胰岛素刺激的葡萄糖摄取增加了三倍。0.1 mM PA诱导胰岛素抵抗,维持细胞活力和分化能力。该模型通过罗格列酮和二甲双胍以及韩国化学银行提供的165种候选化合物的比较药物筛选进行了验证。药物筛选显示,在2D和3D模型中鉴定的五种命中化合物中有三种在3D培养中表现出更大的功效,其结果与小鼠比目鱼肌的离体实验一致。该模型密切模仿体内条件,为2型糖尿病药物发现提供了一个强大的平台,同时支持伦理研究实践。
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.